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a b s t r a c t

Quantum mechanics (QM) approaches (DFT, MP2, CCSD(T), etc.) play an important role
in calculating molecules and crystals with a high accuracy and acceptable efficiency. In
recent years, with the development of artificial intelligence technology, machine learning
(ML) has played an increasingly essential role in accelerating the QM calculations and
predictions of molecular crystals, as well as the discovery of novel materials. This
review provides state-of-the-art information and prospects for QM theories, fragment-
based methods and ML methods, as well as their up-to-date applications in predicting
small inorganic molecules, large drug molecules and relevant molecular crystals. The
discussed applications include ML potential energy surface (PES) construction, crystal
structure prediction (CSP), chemical reaction prediction and predictions of a series
of properties, such as structure, energy, atomic force, bond length, chemical shift,
superconductivity, super-hardness, vibrational spectra, phase transition and diagram.
This work also reviews software and packages built recently based on ML methods for
property predictions and PES constructions in the field of physics and chemistry. For
the three discussed methods, the most time-consuming one is the high-level all-atom
QM method, which is capable of describing electronic structures with high accuracy
and thus predicts properties that are consistent with the experimental results. The
second one, fragment-based QM method, requires less computational time than all-
atom QM, which can accelerate all-atom QM calculations for large systems by dividing
the entire system into subsystems, presenting a considerable efficiency increase. The
computational complexities for fragment-based QM and all-atom QM are N - N2 and
N5-N7 (N is the size of the system), respectively. A well-trained ML model can make
the above predictions within seconds while ensuring a high prediction accuracy, where
its prediction cost and accuracy are determined by the training data and the training
process. Therefore, it is challenging for ML applications in physics and chemistry to
generate highly accurate and powerful ML models while ensuring sufficient datasets.
This work not only provides an overview of the recent progress in QM theories,
fragment-based methods, ML methods and several ML-based software programs and
applications on small inorganic molecules, large drug molecules and relevant crystals,
but also shed light on ML methods in accelerating QM prediction, optimization and novel
crystal material design.
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1. Introduction

For decades, numerous new materials and novel phenomena have been predicted and determined under extreme
ressure and temperature conditions. These harsh experimental conditions necessitate high-quality theoretical investiga-
ions, which could provide a principal explanation for physical and chemical phenomena. Predictions of molecules and
olecular crystals under extreme conditions have been a significant area in both physics and chemistry. The large number
f possible molecules and materials and the numerous ways for physical and chemical transformations make high-quality
pproaches required for understanding the fundamentals of physics and chemistry.
For decades, substantial effort has been made to develop theoretical methods that advance quantum mechanics (QM)

ethods, such as Hartree–Fock (HF), density functional theory (DFT), second-order Møller–Plesset perturbation (MP2)
heory and Coupled Cluster Single-Double and perturbative Triple (CCSD(T)) theory. Despite the enormous computational
osts, these all-atom QM methods are considered the most reliable and precise methods for predicting the crystal
tructures and properties under extreme conditions, such as energies, atomic forces, equations of state, vibrational spectra,
hemical shifts and phase transitions. However, the most popular electronic structure method, DFT, suffers the disability
f accurately describing long-range electronic correlation effects and London dispersion corrections. In recent years, this
opic has received increasing attention, and tremendous efforts have been made to develop dispersion corrections for
FT methods. In addition, several post-Hartree–Fock (post-HF) ab initio QM methods (such as MP2 and CCSD(T)) have
een proposed and used in computational chemistry and physics for molecules of different sizes, and they are capable of
escribing dispersion effects. Progress has provided the basis for wide applications of QM methods in both physics and
hemistry.
However, as the accuracy improved, the computational cost scaling of these high-level QM methods and the relevant

ispersion corrections have become much steeper compared with the underlying DFT models, which significantly limits
heir efficient applications, especially for large molecular systems. In addition, high-level QM methods are usually
erformed with large basis sets, which also dramatically increases the computational cost. In that case, to solve the low
fficiency issues of all-atom QM methods, a series of fragment-based QM schemes has been proposed to accurately predict
he structures, energies, and phase transitions of molecular crystals (such as carbon dioxide, ice, carbon monoxide, and
olid ammonia) at extreme pressures. The fragment-based QM method has a similar accuracy but a much higher efficiency
han the all-atom QM calculation. Fragment-based QM methods have been widely used to calculate energy [1], force and
essians, normal mode phonon analysis [2,3], NMR chemical shift calculations [4–6], and symmetry prediction of space
roups [2] for a series of molecular and crystalline systems, including carbon monoxide, carbon dioxide [7–15], solid
ce [16–21], ammonia [22], and formic acid [1,23].
2
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Although the computational complexity of the fragment-based QM methods is much lower than that of all-atom QM
alculations, it increases rapidly with the size of the system, which makes these fragment-base methods less efficient and
ess applicable for large molecules and large crystal systems. In that case, developing fast, accurate and less expensive
pproach has become a lasting global challenge. In recent years, the rise of artificial intelligence (AI) algorithms has
ttracted significant attention [24–26] and has been widely applied in the fields of physics, chemistry, and material science,
ncluding translation, web search, medical diagnostics [27–30], brain–computer interfaces [31], social media analysis [32],
oard games [33–36], robotics [37,38], nano sciences [39], bioinformatics [40–44] and particle physics [45]. Particularly
n chemistry and physics, machine learning (ML) methods improve the calculation speed by hundreds of thousands of
imes while maintaining the prediction accuracy of traditional ab initio calculations, which greatly shortens the distance
etween human cognition and nature. In general, ML methods use pattern recognition algorithms to train mathematical
elationships between structures/coordinates and observed physical/chemical quantities and further extend these models
o predict the physical, chemical and biological properties for novel compounds, which is distinctly different from physical
odels that rely on explicit physical equations, such as molecular dynamics and QM methods. In addition, compared with
hysical models, ML methods are more efficient and can be applied to large datasets without much of an extra increase
n computational cost.

Fig. 1.1 shows an illustration of the QM, fragmental, and ML methods and the corresponding applications. The
omparison of the computational costs and efficiencies of all-atom QM, fragment-based QM and ML-driven QM methods
s shown in Fig. 1.1(a). All-atom QM methods correspond to traditional ab initio calculations, such as DFT, MP2, and
CSD(T). Fragment-based QM methods are capable of accelerating the ab initio calculations on molecular crystal systems
ith a high accuracy and relatively high efficiency. The last ML-driven methods can speed up ab initio calculations to
he greatest extent with a high accuracy and high efficiency. For crystal systems with a large number of molecules, the
L-driven QM method is capable of calculating the energies, atomic forces and force constants within ten seconds, while

t takes more than 107 seconds for all-atom QM calculations. As shown in Fig. 1.1(b), the all-atom QM, fragment-based
M and ML-driven QM methods all have the potential for PES construction applications in molecules and crystals [46–56]
nd the predictions of crystal structure [57–60], physical and chemical properties [61–78] (such as energy, atomic force,
hemical shift, and phase transition), and chemical reactions [79–81]. The high-speed development of ML methods in
hysics and chemistry has made it possible to not only predict structures and properties but also to design compounds
r materials that have particular properties for a given purpose.
Motivated by the progress in QMmethods, fragment-based QM approaches, and ML-driven QMmethods, and especially

he substantial advance in ML approaches and the wide range of applications, we will review the recent progress of
hese widely used methods and their relevant applications in physics and chemistry. In Section 2, we will review the
hree types of computational methods and the relevant progress, including the all-atom QM methods (DFT, MP2, and
CSD(T)), fragment-based QM approaches (many-body expansion scheme and inclusion–exclusion scheme) and ML-driven
M methods, including ML algorithms, descriptors and model optimizations. In Section 3, we will discuss the recently
eported applications of these QM and ML methods on small molecules and relevant crystals to predict structures and
series of properties (including energy, atomic forces, EOS, vibrational spectra, superconducting, super-hard, chemical
hift, and phase transition) and the ML-based PESs with the QM level of accuracy. In Section 4, we will review the
M calculations and ML-driven methods that are suitably developed for large drug molecules and crystals in property
rediction, crystal structure prediction (CSP) and PES/force field construction. In Section 5, a series of developed software
nd packages based on ML methods for physical and chemical applications will be reviewed.

. Quantum mechanical (QM) methods

The considerably small energy difference between different phases and polymorphs of molecular crystals makes
ccurately predicting the structure, spectra and phase transition challenging. Motivated by these challenges, for decades
remendous efforts have been made to develop various computational methods for the investigation of molecular crystals,
ncluding molecular mechanics methods (Monte Carlo and molecular dynamics), wavefunction-based QM methods (HF
nd semi-empirical), electron density-based QM methods (DFT, MP2 and CCSD), ML methods, such as neural networks
NN), graph neural networks (GNN) and decision tree (DT), and modern ML-driven QM approaches/software, such as
ES-Learn, NN-FQM, UADDCR, and ChemML, as shown in Fig. 2.1.
Since the 1980s, QM methods have made significant improvements in terms of accuracy, including DFT, MP2 and

CSD(T). These electronic structure methods have been widely used in computational chemistry, physics, and materials.
n recent years, van der Waals dispersion has been introduced into DFT, and periodic conditions have been introduced
nto DFT and MP2, which make these ab initio calculation theories more accurate and applicable. However, for large
ystems these methods are computationally expensive and suffer significant efficiency restrictions. In this context, some
ragment-based QM methods [4,82–86], such as binary interaction models, embedded methods, incremental methods
nd hybrid many-body methods, have been proposed to more accurately predict the structures and energies of large
olecular systems. Fragment-based QM approaches have also been widely and successfully applied to calculating the
nergy, structure, phase transition and spectra of large molecular crystals with remarkable precision compared to all-atom
M calculations, but still have a restriction of low computational efficiency. In recent years, the crossing and integration
f computational science, chemistry, physics, and material science has promoted the development and improvement
3
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Fig. 1.1. Illustration of all-atom QM, fragment-based QM, and ML-driven QM methods and the corresponding applications. (a) Comparison of
computational costs and efficiencies of all-atom QM, fragment-based QM and ML-driven QM methods. (b) Corresponding applications of the methods
shown in (a), including PESs construction, properties prediction, chemical reaction prediction and crystal structure prediction.

Fig. 2.1. Development of computation methods in molecular crystal, including molecular mechanics (MM), wavefunction-based quantum mechanics
QM), electron density-based QM, machine learning (ML) methods and modern ML-driven QM approaches.

f a series of computational approaches for accelerating QM calculations on molecular crystals. In particular, ML has
ade significant progress and been widely used in the field of physics, chemistry and materials, which has led to the
evelopment of ML-driven QM methods with high accuracy and efficiency.
4
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Fig. 2.2. Comparison of the accuracy and computational cost for molecular mechanics, DFT, MP2, CCSD(T) and ML methods.

The accuracy and computational cost of molecular mechanics, DFT, MP2, CCSD(T), fragment-based methods and ML
ethods are roughly shown in Fig. 2.2. Compared with the all-atom QM method, the acceleration effect of ML-driven QM
ethods is up to hundreds of thousands of times, which shows its potentially important application prospects. The ML-
riven QM methods have been widely used in the field of computational physics and chemistry, including CSP, chemical
eaction prediction, PES construction, and properties prediction, such as energy, atomic force, chemical shift and thermal
oefficient.
Faster and more accurate calculations are the goals of theoretical and computational physics and chemistry. Solving

his contradiction will allow structural simulations and designs to achieve leap-forward progress. Addressing this problem,
his section will review the three representative QMmethods, including the traditional ab initio theories (such as DFT, MP2
nd CCSD(T)), the advanced fragment-based QM methods, the NN-fragment method, and several ML-driven QM methods
roposed by different research teams. All-atom QM is the earliest ab initio calculation method with the highest accuracy.
he fragment-based QM method was proposed to solve the low calculation speed of QM. While retaining the calculation
recision of all-atom QM, the fragment-based QM method greatly shortens the calculation time via fragment partitioning.
n addition, the recently developed ML-driven QM methods can greatly shorten the calculation time by hundreds of
housands of times while retaining the accuracy of traditional calculations.

.1. All-atom QM theories (DFT, MP2, CCSD(T))

All-atom QM theories, such as HF, Kohn–Sham DFT, MP2, and CCSD(T), are widely used in chemistry, physics and
aterial science, especially crystal systems. For decades, ab initio theories have progressed considerably in dispersion
orrelation, periodic conditions, basis sets, complete basis set (CBS) extrapolation and counterpoise correction for
redicting molecular crystal energies and the optimization of crystal structures.

FT
Electronic structure methods, such as HF and DFT, are the most popular methods in computational physics and

hemistry. However, these methods with semi-local density functional approximations cannot deal with electronic
orrelation interactions and thus fail to consider London dispersion corrections [87,88], which are also known as van der
aals (vdW) dispersion corrections. The vdW dispersion interactions arise from correlated fluctuations between regions
ith different electron densities and contribute significantly to the packing of molecular crystals. In recent years, this
opic has received increasing attention, and tremendous efforts have been made to develop dispersion corrections for
he DFT methods. These improved dispersion corrections are shown in Table 2.1, which fall into three major categories:
emi-classical treatments, nonlocal (NL) density-based schemes and effective one-electron-based dispersion corrections.
The semi-classical treatment performs the corrections by adding the dispersion energy between pairs of atoms to the

lectronic energy of the DFT methods. Although dispersion interactions between atoms or molecules are intrinsically
uantum mechanical interactions, they are treated as classical interactions, which are known as vdW or London
nteractions. In 2004, Grimmer et al. [89] proposed the DFT-D1 method for accurately describing vdW complexes, including
mpirical corrections. Subsequently, Grimmer et al. [90] (2006) introduced the DFT-D2 method as an update of the DFT-
1 method, which has become an understandable starting point for developing other dispersion corrections. In 2010,
rimmer et al. [91–93] presented the DFT-D3 approach, in which the dispersion coefficients are explicitly evaluated
y the chemical environment with the empirical concept of fractional coordination numbers (CNs). As an update of
FT-D1 and DFT-D2, the DFT-D3 model is superior and has presented an excellent performance in the prediction of
5
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Table 2.1
List of some notable dispersion correction models, including correction categories, computational complexity compared to underlying DFT
models, higher many-body interactions, authors and first reported years.
Models Categories Computational complexity Many-body Author

vdW-DF Nonlocal density-based High Yes Dion et al. [107–111] (2004)
Minnesota Effective one-electron based Medium – Zhao et al. [112–114] (2005)
DFT-D2 Semi-classical Low No Grimmer et al. [90] (2006)
XDM Semi-classical Medium Yes Becke et al. [102,103] (2006)
TS Semi-classical Low No Tkatchenko and Scheffler [93] (2009)
VV10 Nonlocal density-based Medium Yes Vydrov and Van Voorhis [115–118] (2009)
DFT-D3 Semi-classical Low Yes Grimmer et al. [91,92] (2010)
MBD Semi-classical Medium No DiStasio et al. [106] (2012)
DCP Effective one-electron based Medium – van Santen et al. [119] (2015)

small molecules [94–97], large molecular benchmarks [98,99] and molecular crystals [100,101]. In 2009, Tkatchenko
and Scheffler [93] proposed a density-dependent scheme of dispersion correction (TS) between atoms and molecules, in
which the dispersion energy is restricted to the two-body interaction and the chemical environment is evaluated by the
electron density. Other state-of-the-art dispersion corrections with semi-classical treatment include the exchange-dipole
moment model (XDM) [102,103], the local-response dispersion model (LRD) [104,105], and the many-body dispersion
model (MBD) [106], all of which have demonstrated a good performance in various benchmarks.

The nonlocal density-based dispersion corrections obtain the dispersion energy and the corresponding integral kernel
ith only the electron density. In 2004, Dion et al. developed the first nonlocal density-based dispersion correction
odel, vdW density functionals (vdW-DF1) [107–109], in which the correlation energy is obtained by summing the

ocal part evaluated with the LDA correlation and the nonlocal part. Despite the various successful applications, vdW-
F1 is demonstrated to underestimate hydrogen bond interactions and to overestimate separations between molecules.
ubstantially, several modern dispersion corrections have been introduced, including vdW-DF2 by Lee et al. [111] and
dW-DF-09 [110], VV9 [116–118], and VV10 by Vydrov and Van Voorhis (VV) [115]. These nonlocal functionals have
resented a good performance in a variety of benchmarks, including ices, benzene, aspirin, and hexamine. Compared
ith semi-classical functionals, nonlocal density-based dispersion corrections include self-consistent vdW interactions in
lectron density but are typically more demanding in terms of computational cost.
The London dispersion interaction is a two-particle interaction arising from correlated electron movements. In

ffective one-electron dispersion corrections, the dispersion interactions are empirically described, while all nonlocal
ensity information and dynamical properties are ignored. In recent years, a series of one-electron potentials have been
ntroduced, including dispersion-corrected atom-centered potentials (DCACPs) [120], DCACPs for a particular DFA or basis
et combination (DCPs) [119], Minnesota functionals [112–114] (M05, M06, MN12, etc.) and the related variants. These
unctionals have presented an excellent performance for kinetics and thermochemistry on large datasets, but with much
igher computational cost. As seen above, these dispersion corrections of DFT functionals are continuously developed and
mproved, and there is no one model that is significantly better than the others.

P2
Decades ago, MP2 was developed for the calculation of periodic systems, such as polymers and other one-dimensional

ystems. In recent years, periodic MP2 in three dimensions has made great progress and has become an increasingly
ssential approach for predicting molecular crystals. By adopting Laplace transform techniques, Scuseria’s group [121–
23] (2001–2010) introduced the atomic orbital-based algorithm of periodic MP2, which has been applied to polymers.
n 2007, Maschio et al. [124,125] presented a density-fitted local MP2 algorithm using a direct space method and the
ulay/Werner-type local correction implemented by projected atomic orbital domains, which is the first periodic MP2
lgorithm applied to molecular crystals. Subsequently, many other periodic MP2 algorithms have been proposed, including
he plane wave periodic MP2 algorithm with the projector-augmented wave approach [126,127], the localized resolution
f identity approach for periodic MP2 [128], the orbital specific virtual (OSV)-based MP2 algorithm [129] (which eliminates
he need for careful domain selection and discontinuities in the potential energy surface and reduces the computational
osts), and the extremely parallel Gaussian and pale wave MP2 (GPW-MP2) [130,131] approach, with an 80% parallel
fficiency. Notably, these periodic MP2 approaches can also be implemented in double-hybrid density functionals and in
ethods with random phase approximation (RPA).

CSD(T)
As the demand for computational accuracy increases, much effort has been made to develop more efficient QMmethods

ompared with DFT. Several post-HF ab initio QM methods have been proposed and used in computational chemistry
and physics for molecules of different sizes. Among these methods, CCSD(T) is the most important, in which the single
and double contributions are fully treated, but the connected triple contribution is treated noniteratively using many-
body perturbation theory. CCSD(T) is an upgraded version of CCSD that includes only single and double excitations.
CCSD(T) has shown excellent performance for a wide range of applications and is known as the gold standard in quantum
chemistry [132]. However, the computational cost scaling of CCSD(T) is extremely steep at O(N7), where N denotes the
molecular size, which makes it a challenge for CCSD(T) to be efficiently applied to large molecules.
6
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Fig. 2.3. Illustration of fragment-based QM methods for molecular crystals, with the approximation that the chemical environment of a local region
in a large system is mainly influenced by the nearby regions (orange shade), where the energies are calculated by QM methods.

The improvements in modern computer hardware and the parallel program have made periodic MP2/CCSD(T)
pproaches much more applicable for crystal systems containing tens of atoms. However, despite the improvements
n terms of accuracy, the periodic MP2 and CCSD(T) methods increase the computational effort faster as the system
rows compared with DFT models. The computational cost scaling of MP2, CCSD, and CCSD(T) is O(N5), O(N6) and O(N7),
espectively, while it is O(N3) for the underlying DFT models. Moreover, to meet the accuracy requirements, these QM
odels are usually performed with large basis sets, which substantially increases the computational cost and makes them
ore challenging for applications in large molecular crystal systems. In practice, well-designed algorithms and careful
umerical treatment can be helpful to address this challenge. The introduction of fragment-based methods and deep
eural networks (DNNs) also makes these high-level QM methods suitable for large molecular crystals, which will be
iscussed in Sections 2.2 and 2.3.

.2. Fragment-based QM methods

Ab initio theories (DFT, MP2, CCSD(T)) can accurately describe the electronic structure of molecules and are thus
onsiderably precise for molecular crystal calculations and understanding the fundamentals at the atomic level. However,
he extreme computational cost limits their applications for large-scale crystal systems. In this case, some efforts have
een made to develop linear-scaling methods to address the computational limitations. Among these methods, fragment-
ased QM methods have been popular for decades as a powerful tool for QM calculations of large molecular systems
ue to their ability to effectively reduce the computational cost scale. In the fragment scheme, a large system is divided
nto a series of smaller subsystems for QM calculations, and the total energy and properties of the entire system can be
alculated by the summation of these small subsystems. Many fragmental schemes have been proposed for molecular
rystals with different formations of fragments and interactions, including many-body expansion (MBE) schemes [82,83],
nclusion–exclusion principle (IEP) methods [133–136] and hybrid many-body interaction (HMBI) methods [84].

Fragment-based QM methods assume that the chemical environment of a local region in a large system is mainly
nfluenced by nearby regions and weakly influenced by faraway atoms, as shown in Fig. 2.3. Thus, a macromolecule or a
arge molecular system is divided into a series of subsystems, and the properties of the entire system are evaluated by
ombining the corresponding properties of the small individual fragments. For molecular crystal systems, each individual
olecule is treated as a unique, non-overlapping fragment in most typical fragment-based methods. Therefore, a MBE
cheme can be used to handle the interactions among the fragments, where the total energy of a molecular crystal system
s expressed in terms of one-body, two-body, three-body, and higher-order terms. For periodic systems, the contributions
f molecules in periodic cells interacting with molecules in the central cell are involved in two-body and higher terms. The
airwise interactions usually contribute most of the lattice energy [137] (80%–90%). However, in practice, MBE schemes
annot always present rapid convergence, especially for crystal systems with strong hydrogen bonding interactions. The
igh-order terms in the many-body expansion will lead to some challenges. For example, the fragments are usually
alculated with MP2 and even CCSD(T), which have very steep computational cost scaling. Therefore, the computational
ost for fragments of the higher-order terms will increase rapidly. In addition, the number of fragments for higher-order
7
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erms will also increase rapidly with the number of orders (n). Corresponding to the rapid growth of the computational
ost, the contribution of high-order terms will rapidly decrease as the number of orders increases. Moreover, in MBE
chemes, basis set superposition errors (BSSEs) have become a great challenge for higher-order terms [138,139].
To make MBE schemes more practical, various fragment-based methods have been proposed based on two main types

f options. Based on the IEP scheme, the first treatment is to approximately evaluate the contribution of high-order terms
ith lower-level theories, such as HF. Generally, the contribution of high-order terms is implicitly evaluated by performing
he calculation for the full system and subtracting out the contribution of low-order terms (e.g., one-body and two-body),
hich will be calculated using high-level methods (e.g., MP2, CCSD(T)). Another treatment (MBE) is to truncate the many-
ody expansion (e.g., two-body), in which the high-order terms are neglected. In this treatment, the contribution of these
eglected high-order terms can be evaluated by embedding the low-order terms in the electronic field, which is generated
sing efficient methods.

BE scheme
In 2005, Hirata et al. [82] introduced the binary interaction method based on MBE scheme, which is the first fragment-

ased QM method for molecular systems. Subsequently, the binary interaction method was improved and applied to
eriodic crystalline systems [1,83]. In the binary interaction method, the one-body and two-body terms in the many-
ody expansion are calculated with high-level methods, while all of the higher-order terms are neglected. Then, these
ne-body and two-body terms are embedded in the electrostatic field of the remaining systems represented by atomic
harges computed by low-level methods, which approximately evaluate the contribution of the many-body polarization
nd long-range pairwise polarization and electrostatics. The binary interaction method has been extended to a series of
ethods suitable for calculating the energy, force and Hessians [1], normal mode phonon analysis [2], NMR chemical
hift calculations [4–6], and symmetry prediction of space groups [2]. The variants of binary interaction methods have
een widely used to calculate the energy, vibrational spectra, equation of state (EOS) and phase transition for a series of
rystalline systems, including carbon monoxide, carbon dioxide [7,9,10,12,13,15], solid ice [18,19,140], ammonia [22],
nd formic acid [1]. Soon after, the binary interaction model was also extended to the ternary interaction variant,
hich explicitly includes three-body terms [83]. However, the ternary interaction variant suffers substantial increases

n computational cost, which limits its application to a wide range of crystalline systems.

EP scheme
Different from the binary interaction methods, the IEP scheme includes all many-body terms by approximately

valuating the contributions of high-order terms with a low-level QM approach [133–135]. These contributions of high-
rder terms are implicitly summed by calculating the energy of the entire system and then using the energy of the
igh-level theoretical calculation of the low-order term in the expansion to replace the value of the low-level calculation.
he IEP scheme has been widely applied to calculate the lattice energy of many crystals. In addition, this scheme can be
asily proposed for other calculations, such as chemical shifts, phonons and crystal structures, with minimal modifications
f the existing code. The choice of electronic structure theories for low-level calculations and high-level calculations
ill significantly influence the computational accuracy and cost. In general, the HF is used for the low-level method
alculations. In recent years, some DFT functionals have been used as a replacement for HF to improve the performance
f IEP methods, showing a good performance in calculating the lattice energy for benzene [141], urea [136], and para-

diiodobenzene [142]. As discussed in Section 2.1, the underlying DFT cannot evaluate the many-body dispersion correctly,
which can be addressed using dispersion corrections, such as the D3 correction. Therefore, DFT functionals with dispersion
corrections can be a better choice to improve the accuracy. With progress in periodic and parallel algorithms, MP2 can
also be used as a low-level calculation, in which the many-body polarization and exchange effects can be reasonably
incorporated.

HMBI model
Apart from electronic structure methods (HF, DFT and MP2), the force field can also be a choice to calculate the

contribution of the many-body terms [137]. In 2009, Beran et al. [84] proposed the HMBI model, which treats the one-body
and short-range two-body terms with QM calculations, but evaluates the many-body and long-range two-body terms with
a polarizable force field instead of a low-level electronic structure method. The inclusion of polarizability, exchange and
many-body dispersion terms in the force fields will significantly increase the accuracy of this model. The HMBI method
has been widely used for calculating the lattice energy, Hessians, structure optimizations and property predictions in solid
ice [16], carbon dioxide [11], aspirin and other molecular crystals.

Using an embedded approach, many other related fragment-based QM methods have been proposed in recent years. In
2012, Bygrave et al. [85] introduced an embedded MBE scheme in which exchange–repulsion contributions are included
in the embedding potential. The embedded method was successfully used for predicting the energy and structure on
several crystalline systems, including solid ice, carbon dioxide, hydrogen fluoride and clathrate hydrates, with the results
consistent with experiments but at a low computational cost. In 2014, Hertman et al. [4] also implemented an embedded
model based on HMBI to calculate NMR chemical shifts. With electrostatic embedding, Fang et al. [86] (2015) proposed a
generalized energy-based fragmentation (GEBF) scheme for molecular crystals.

Table 2.2 shows several notable fragment-based QM methods based on MBE, IEP and HMBI schemes, most of
which incorporate an electrostatic embedded field. These embedded schemes have demonstrated successful applications
on molecular crystals in their own field, including structure optimization and prediction, calculation of energy, EOS,
vibrational spectroscopy, and phase transition. These embedded fragment methods are being continuously developed
and improved for molecular crystals, and there is no one fragment approach that is significantly superior to the others.
8
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Table 2.2
Notable fragment-based QM methods including the many-body truncation, category,
electrostatic embedding and year of first report.
Method Truncation Category Embedding Year

Hirata et al. [1,82] Two-body MBE No/yes 2005
Dahlke and Truhlar [143] Three-body IEP Yes 2007
Bludsky et al. [141] Two-body IEP No 2008
Kamiya et al. [83] Three-body MBE Yes 2008
Bygrave et al. [85] Two-body MBE Yes 2012
Beran et al. [84] Two-body HMBI Yes 2009
Hertman et al. [4] Two-body HMBI Yes 2014
Fang et al. [86] – GEBF Yes 2014

Fig. 2.4. Literature counts from 1991 to 2020 in chemistry and physics. The information is extracted from the Web of Science in April, 2021, using
‘‘DFT, MP2, CCSD’’ and ‘‘machine learning, neural networks, artificial intelligence’’ as the key words, respectively.

2.3. Machine learning (ML)-based QM methods

Although the improvements in modern supercomputers have made electronic structure methods much less expensive
in terms of computational cost and applicable in many fields, these QM methods still face a challenge since the system
size and complexity have also increased rapidly. To catch up with the growing demands, abandoning ideal model systems
is significantly required to find a larger series of structures, compositions and materials, to track the evolution of the
system with a longer time scale and to resolve even subtle details of atomic interactions with a high degree of accuracy,
such as reaction barriers.

In recent years, ML approaches have made substantial progress and have been widely applied to physics, chemistry and
biology with considerable precision and efficiency, including potential energy surface calculations, force field construction
and rapid predictions of NMR chemical shifts, mass spectra and three-dimensional (3D) structures and pathways of
chemical reactivity and catalysis. As shown in Fig. 2.4, since 2016 the number of academic articles related to ML with
the keywords ‘‘ML, neural network (NN), and artificial intelligence (AI)’’ in the field of chemistry and physics has grown
exponentially. Compared with QM, the keywords ‘‘DFT, MP2, CCSD’’ has linearly increased. The popularity of ML has
demonstrated that ML is being used as a powerful tool in chemistry, physics, and material science for predicting the
energy, structure and property. Particularly, based on QM calculations the neural network-based potential energy surface
has a great potential in predicting molecular crystals and substituting electronic structures.

ML is omnipresent in everyday life and has a long and storied history that originated from the exploration of artificial
intelligence [61]. Since the 1950s, acquiring knowledge by machine has drawn much attention, and a series of symbolic
methods have been proposed for this purpose [144]. Subsequently, connection principles, such as NN and perceptron, were
widely used to propose new ML methods for information storage and organization in the brain [145]. Based on statistical
learning theory (SLT), various ML methods have been proposed, such as DTs and support vector machines (SVMs). In
recent years, some modern ML methods have received much attention in academia and industry, such as GNNs, Gaussian
process regression (GPR), convolutional neural networks (CNNs) and deep learning (DL) for big data investigations [26].
Generally, ML focuses on researching approaches to make computers learn automatically for knowledge acquisition and
to improve the performance continuously without an explicit program design. In 1980, as the first ML seminar hosted
at Carnegie Mellon University of the United States, ML became a discipline in its own right and began to take shape
9
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Fig. 2.5. Overall relationships of machine learning (ML) and current hot topics in computer science, including databases, knowledge discovery, data
mining, artificial intelligence, statistics, pattern recognition, and neurocomputing.

rapidly. Fig. 2.5 shows the relationship of ML and current prominent research areas in computer science. As a branch of
AI, ML has become an essential approach for machine knowledge acquisition of machines. ML is also an interdisciplinary
discipline with close ties to current popular methods in computer science. In addition, ML can also be applied to pattern
recognition and data mining. ML learns knowledge, finds insights from data and outputs reliable and repeatable results by
learning from previous consistent data. ML has presented an excellent performance in terms of regression, classification
and other topics, and has been demonstrated to be an essential tool in various fields, including computational physics,
chemistry, bioinformatics, material science, speech recognition, image recognition [67], natural language processing (NLP)
and information security.

ML workflow
Typically, ML is defined as ⟨P, T , E⟩, where P denotes performance, T is task and E is experience. The definition

is that for a program, if its performance presented by P on task T improves with experience E, then the program
is considered capable of learning for task T [146] from experience E. In computational physics and chemistry, task T
mainly refers to the prediction of energy, related derivatives, property and structure. For computational physics and
chemistry, the widely used ML approaches have evolved from the previous algorithms to now include nonparametric
statistical learning, such as DNN, CNN, GNN GPR, DL and kernel ridge regression (KRR). Fig. 2.6 shows the workflow of
the application of ML approaches to chemical research, which presents the three elements of a successful process: size
and quality of the dataset, feature representations, and ML methods. First, for a model training process, a large dataset
with an appropriate form is extremely important for the ML method to be effective. These datasets can be obtained from
experimental results, calculations and some existing databases. In practice, abundant training datasets or small datasets
with well-formulated representations [63] with ML models can lead to faithful results in chemical predictions, such as
molecular representations [65], enzyme classification [66] and predictions of electronic structure correlation energies [63].
In contrast, a training process with a dataset from inexpensive calculations or experimental results that are error prone
and noisy will strongly depend on the choice of ML models to achieve a convincing performance. Second, data cleaning
and feature engineering (including feature extraction and representation) are proposed to convert the original data to
representations or descriptors suitable for feeding to ML models. Then, an appropriate ML model will be chosen to train
the relationship between the conditional attributes and the decision attribute by tuning the optimal hyperparameter.
Finally, the proposed relationship model can be applied to predict the properties of interest.

Datasets
Since the training and testing sets are usually generated from same dataset, some of the issues existing in the dataset

cannot be noticed when selecting the ML models and performing training process. Despite small errors during the cross-
validation process, the ML model may still perform poorly in real chemical/physical problem. Besides, the case where
the training and testing sets are from different datasets is called covariate shift, which can adopt new approaches for
validation [147] such as importance weighted cross validation (IWCV) [148].

A robust model can usually be constructed from comprehensive datasets, appropriate feature representation and
data-efficient ML methods. Therefore, a careful data collection process is essential for ML model construction, which
may incorporate with an initio preprocessing for identifying and deal with the missing or spurious elements [149]. The
Inorganic Crystal Database (ISCD) contains more than 190000 corrected data, which still contains measurement and

human errors. To build robust ML model and avoid being misled, identifying and handling these errors are of great
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Fig. 2.6. Workflow of the application of ML-based QM method in computational chemistry and physics, including data collection, feature engineering,
model building and model application. The model can be constructed by various ML methods, such as Bayesian theory, decision tree (DT), supporting
vector machines (SVM), artificial neural network (ANN), multiple linear regression (MLR) and kernel ridge regression (KRR).

important [150]. The error propagation and low reproducibility of experimental datasets from peer-reviewed scientific
researchers have been a public concern in ML model construction.

The datasets are of great importance for ML applications. Typically, the form of the database determines the choice of
machine learning model. Supervised learning requires a large amount of training data containing inputs and corresponding
outputs to build a function that can predict the output with a given input. The dataset consists of only inputs can be
applied to unsupervised learning for pattern identifying and clustering. Besides, semi-supervised learning is suitable for
the dataset that containing a large amount of input but only a small amount of output values. Among the three types of
ML models, supervised learning is most powerful and is commonly used in physical and chemical sciences. On the other
hand, the unsupervised learning is usually applied to large datasets for classification and analysis of data [151].

Feature representations
In practice, the ML model requires the dataset in a particular numerical representation that allow the algorithm to

extract meaningful information from these data [152–156]. The process of encoding original data into the numerical
format that suitable for a ML model is known as feature engineering. Generally, a well-defined representation of training
data can improve the performance of ML models. However, fundamental understanding of the focused physical/chemical
problem and the ML algorithms are strongly required to constructing best representation of data, which makes feature
representation remaining a challenge and hot topic for ML models in chemical and physical problems.

Currently, a series of representation methods has been proposed. For example, on-hot encoding is the most naïve
approach that treats molecules as distinct categorical variables and represents such variables with Boolean vectors. ML
models with on-hot encoding are only capable for predicting of structures that have been encoded. Another example
is the Coulomb matrix [156], which presents the information in atomic nuclear repulsion and potential energy and is
invariant to molecular translations and rotations. Other representation approaches include SMILES, attributed graph, voxel,
fingerprint, expert descriptors, image, and spatial coordinates [157]. For molecular systems, the major challenge is to
reconcile all invariances into a descriptor without sacrificing its uniqueness and computability. For example, different
geometries may be converted to same representation in some representation approaches. In that case, much effort has
been made to address this challenge, such as fingerprints approaches [158–162], density representations [163], parameter
sharing [164–166] and invariant integration [167]. Recent years, some ML methods have been capable to operate directly
on 2D molecular graphs and even 3D molecular conformers, such as message-passing NNs [68] and atom-centered
convolutional networks [168]. Fig. 2.7(a) shows several approaches for representing molecular structures, including one-
hot, fingerprint, Coulomb matrix, expert descriptor, attributed graph, image and voxel, which can be fed into different ML
methods. Noteworthy, since the current representation approaches are with compromise, careful selecting of descriptors

is essential for every ML model.
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Fig. 2.7. Illustration of feature representations and ML methods. (a) Approaches for representing molecular structures, including one-hot, fingerprint,
Coulomb matrix, expert descriptor, attributed graph, image and voxel. (b) A series of ML methods that can be represented in different ways, including
linear regression, kernel methods, random forest, neural network, message passing NN (MPNN), 2D convolutional neural network (CNN) and 3D CNN.

ML methods
After collection and representation, the data are fed into ML models for classification or regression tasks. According

to the task and the type of data, a series of ML algorithms can be applied to model training. For example, based on
Bayes’ theory, Naïve Bayes classifiers [169] are a series of classification algorithms for identifying the most probable
hypothesis. K-nearest-neighbor (KNN) methods [170] can be applied to both classification and regression tasks, which
relies on the k nearest neighbors in the data. Based on the operation of the brain, NNs and relevant variants are the most
common ML methods in physical/chemical problems, including artificial NNs (ANNs) [171], DNNs [25], message passing
NNs (MPNNs) [172], CNN [173], and 3D CNN [174]. In addition, kernel methods are the best-known ML methods, including
SVM and KRR [175], which use a kernel function to transform input data into a higher-dimensional representation that
makes the model solving easier. Besides, other commonly used ML methods in physics and chemistry include DT, random
forest (RF) [176], and atomistic network [177]. Fig. 2.7(b) presents seven ML models (linear regression, kernel methods,
random forest (RF), NNs, MPNN, 2D CNN and k3D CNN) that are capable with different representations.

Generally, using a range of different algorithms or similar algorithms with different parameters can be helpful to
construct a robust ML model. The hyperparameters require to be estimated beforehand, since even small changes in
hyperparameters can significantly influence the performance of ML model. For a ML training process, the model errors
mainly remain in model bias (incorrect assumptions in the ML method), model variance and irreducible errors. High bias
usually results from the inflexible model or insufficient data that cannot adequately describe the relationship between
inputs and outputs. On the other hand, a large number of parameters or a complex model may result in high variance. To
evaluate the accuracy, the ML models usually require to be applied to unseen data. The cross-validation is a commonly
used procedure for accuracy testing, which reliable when the training and validation sets are representative for the whole
population. Carefully selecting methods to evaluate the applicability and transferability of ML models is strongly required
in most tasks [149].

Categories of ML applications
Although ML methods were proposed primarily for tasks in computer science, such as image recognition, a series of

novel feature representations and descriptors has been developed for applications in chemical science. There are three
main categories for ML being applied to physics and chemistry: forward models that predict chemical properties directly;
potential energy surface (PES) models; and hybrid models that construct exchange and correlation functionals of electron
density or wavefunctions. Fig. 2.8 shows the schematic diagram of the forward model, PES model, and hybrid model.
In the forward model (Fig. 2.8(a)), the inputs and outputs are the representation of the property of interest, making this
12
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Fig. 2.8. Three categories of ML models applicable to chemistry and physics. (a) forward model that directly predicts the chemical property, in which
ifferent ML models (ML1 , ML2 , etc.) are constructed for different predictions; (b) potential energy surfaces (PESs) model that predicts properties
hrough PESs; and (c) hybrid model that constructing ML-based exchange and correlation functionals (MLfunc) of electron density or wavefunction
or predicting ground-state properties.

rocess simple and easiest for understanding and applications. For decades, under the forward model process ML methods
ave been successfully applied to a wide range of predictions. For example, very recently Liu et al. (2019) proposed a deep
earning algorithm to predict the chemical shift using an atom-centered Gaussian density model as the data representation,
hich presents good consistency in the chemical shifts of 13C, 15N, and 17O compared with the QM methods [69]. In the

same year, Kelley et al. reported a graph convolutional model with fixed molecular descriptors and previous graph neural
architectures that outputs reliable results at the level of experimental reproducibility [68]. Subsequently, Morita et al.
(2020) introduced a supervised ML model to predict the optical dielectric constants of crystals by combining the SVM,
DNN and DFT methods. In addition, with an appropriate process design, ML methods have been successfully used to
predict 3D structures, spectroscopy, chemical reactivity and molecular properties [68–72].

Based on QM or experimental results, ML advances computational physics and chemistry by quickly predicting
properties. However, as shown in Fig. 2.8(a), the transferability leads to great limitations on the efficiency of the forward
model strategy. Different property predictions require particular ML models (ML1, ML2, etc.) and datasets, resulting in
enormous computational or experimental costs. On the other hand, these direct property predictions do not explicitly
capture fundamental chemical concepts, which makes it challenging to explain chemical and physical discoveries. In this
case, PES models (Fig. 2.8(b)) and hybrid models (Fig. 2.8(c)) have drawn substantial attention. All chemical and physical
properties can be obtained by the electronic Schrödinger equation and derived from the grand-state wavefunction.
Therefore, an electronic structure or wavefunction ML model is very practical for predicting ground-state properties
(Fig. 2.8(c)). In 2017, Hegde and Bowen introduced a transferable ML model using representations of atomic neighborhoods
and KRR to predict DFT Hamiltonians, which were used to calculate the band structure and ballistic transmission with
a considerable accuracy [178]. Two years later, Townsend and Vogiatzis [179] built a model to predict the converged
coupled-cluster singles and doubles (CCSD) amplitudes from the electronic properties inherent to MP2. More recently,
other models based on supervised ML or DP have been proposed for predicting QM wavefunctions as well as exchange
and correlation functionals.

The buildings and applications of hybrid models require extensive knowledge of quantum mechanics, which limits
the wide-range applications, not to mention the model’s ultrahigh requirements for accuracy. In that case, PESs are
introduced for predicting the energy and properties without electronic structure calculations (Fig. 2.8(b)). Among the
various ML methods, NNs, which are biology-inspired functions, are the most widely used methods for constructing PESs.
13
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Fig. 2.9. Process of constructing PESs for one-, two-, and three-body terms with NN from molecular crystal structures.
Source: Reproduced from Han et al.’s work [183].

In 1995, Blank et al. introduced feed-forward NN (FFNN) to represent the DFT PESs for molecule-surface scattering [180],
which is known as the beginning of modern ML potential (MLPs). As shown in Fig. 2.9, the construction of MLPs is very
modular, containing only two domain components: the structural representation or descriptor and the ML method. They
are proposed using a consistent dataset of DFT energies and forces obtained from atomic structures. Then, these data are
converted to ML representations, such as Gaussian descriptors via feature engineering. With these representations, the
MLP can be trained using an appropriate ML method. The structure-energy relationship in MLPs is presented by an ML
method that does not bring any approximations or assumptions, apart from the DFT methods used for the generation
of a consistent dataset. Since then, all NN PESs (NNPs) have been based on feed-forward NNs (FFNNs). However, these
early NNs are more suitable for low-dimensional systems and suffer great restrictions when applied to high-dimensional
systems. For example, the number of input nodes for an FFNN is fixed, which corresponds to system freedom, allowing
only one FFNN PES to be applied to one particular system. In addition, the rotational and translational invariance of energy
and permutation symmetry [181,182] make the development of appropriate inputs a major challenge.

In 2007, Behler and Parrinello [184] proposed a novel NNP method suitable for high-dimensional systems with
thousands of atoms, in which a separate FFNN is used for each atom in the system, and the total energy is calculated
by combining all the atomic contributions. Fig. 2.10 shows an illustration of a high-dimensional NNP (HDNNP) for the
three-component system, which contains three elements (A, B and C). Using a separate FFNN for each atom, this HDNNP
overcomes the restriction of input nodes in early NNPs. For each element, the atomic NNs use a similar design in
setting the number of hidden layers and neurons and the same weight parameters. In HDNNP, many-body atom-centered
symmetry functions are used to describe the atomic environments, and a series of atomic NNs is used to determine the
relationship between the descriptors and energies. Smith et al. [185] proposed an extensible neural network potential
(ANI) for molecular energy in 2017, followed by a general-purpose neural network potential based on transfer learning.
Subsequently, Yao et al. [186] introduced TensorMol-0.1: a neural network augmented with long-range physics. Soon after,
Wang et al. [187] (2018) presented a deep learning package, DeePMD-kit, for many-body PES representation and quantum
molecular dynamics for molecules, extended systems, metallic systems and bonded systems. Using transfer learning (TL),
Smith et al. [77] (2019) introduced a general-purpose PES approaching coupled cluster (CC) accuracy. Very recently, Nandi
et al. [188] (2021) proposed the permutationally invariant polynomial (PIP) method to train high-dimensional PESs that
reach the accuracy of the CCSD(T) level. The PIP method is a ‘‘∆-machine learning’’ approach that can bring a property
such as PES) based on DFT energies and gradients to the accuracy of the CC level. Recently, other MLP models have also
een proposed with considerable accuracy, such as TorchANI [189] and AP-Net [190]. A list of constructions of MLPs is
hown in Table 2.3, including the model names, the testing property and error, and the ML method used for potential
raining.

For years, numerous descriptors, which are one of the main components for constructing MLPs, have been proposed
or HDNNPs to describe atomic and molecular environments, such as Coulomb matrices, molecular local frames, NNs
or electrostatic multiples, the combination of Gaussian processes and four-dimensional spherical harmonics, the smooth
verlap of atomic positions (SOAP), Fourier series of atomic radial distribution functions, and the bag of bonds approach.
he improvements in the ML methods and descriptors have significantly promoted the improvements of MLPs. With the

ubstantial progress of these descriptors and methods, a wide range of successful HDNNPs have been reported for different
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Fig. 2.10. Illustration of the high-dimensional NN (HDNN) suitable for the three-component system, which contains elements A, B and C.

Table 2.3
List of applications of ML methods for constructing PESs.
Year Models Testing property Testing error ML method

2007 [184] HDNNP Energy and force 5–6 meV and 0.2 eV/Å NN
2017 [185] ANI-1 Energy 0.4 kcal mol−1 DNN
2017 [186] TensorMol Energy and force 0.054 kcal mol−1 atom−1 and

0.49 kcal mol −1 Å−1
NN

2018 [187] DeepMD-kit Energy and force 4.3% and 2.9% NN
2019 [77] ANI-1ccx Energy 0.23 kcal mol−1 TL
2020 [189] TorchANI coefficient of determinations 0.96 and 0.99 DL
2020 [190] AP-Net Interaction energy 0.37 kcal mol−1 NN
2021 [188] PIP Harmonic frequencies 31 cm−1 ∆-ML

systems, including small molecules (TiO2, ZnO, and water), molecular clusters, bulk materials, metal cluster surfaces and
aqueous electrolyte solutions.

As discussed above, direct property prediction is the most efficient and practical way for ML methods to be applied to
chemical science. Since the performance of ML training strongly depends on the quality of datasets, experimental results
or expensive QM calculations are usually essential for faithful predictions. However, each predicted property requires
re-collecting the dataset and training the ML model, leading to a great challenge for ML methods to be transferable and
efficient. In contrast, ML methods can also be used for constructing exchange and correlation functionals of the electron
density or wavefunction, which are capable of calculating a wide range of properties. Despite the broad applicability and
transferability, ML constructed functionals still suffer limitations in terms of accuracy and system size. Nevertheless, ML-
constructed exchange and correlation functionals of electron density or wavefunctions are worthy of further development
and are the most promising solution for widespread applications in QM physics and chemistry. Finally, with the capability
of predicting various properties that relate to energy, ML-constructed PESs are also a reliable choice for molecular
crystalline systems. More importantly, PESs can be combined with fragment-based schemes, greatly expanding their
applicability for a wide range of systems with different compositions and sizes.

2.4. Discussion: improvements and outlook

In recent decades, since the first development and application, dispersion corrections for the vdW dispersion energy
in standard electronic structure methods (e.g., HF or the underlying DFT) have reached maturity and are being continu-
ously applied in computational physics and chemistry. In line with theoretical development and improvement, London
15



Y. Han, I. Ali, Z. Wang et al. Physics Reports 934 (2021) 1–71

d
d
a
c
a
b
c
f
s
t

t
i
a
w
c
a
d
c

t
c
o
t
a
t
h
a
c
i
a
d
M
r
v
e

3

n
o
f
m
p
s
(
m
p
n
t
F
H
g
t
w
a

ispersion interactions have been gradually accepted as an essential concept in computational physics and chemistry. The
ispersion interactions influence the chemical properties only for large systems with more than 30 atoms, which results in
long time for establishing widely used DFT-D methods. For a long time, large molecules could not be treated with QM in
omputational physics and chemistry, whereas DFT calculations can currently be performed on molecules with 100–200
toms with periodic boundary conditions. Moreover, these post-HF methods (e.g., MP2-related methods and CCSD(T)) have
een greatly improved to describe electronic structures well, and thus achieve a higher accuracy. Improvements in modern
omputer hardware and parallel versions of programs have made periodic MP2/CCSD(T) approaches more applicable
or large crystal systems containing tens of atoms. However, despite the improvements in accuracy, the computational
caling of periodic MP2 and CCSD(T) methods are much steeper compared with underlying DFT models, which limits
hese electronic structure-based methods from being widely applied to large systems.

On the one hand, the previously introduced fragmental approaches have presented a good performance in computa-
ional chemistry and physics, especially for molecular crystals. These fragmental methods all have advantages, and there
s no clear evidence that any certain fragmental method is better than the others. For example, many body schemes with
n embedded charge can be simply achieved and performed in energy calculations with considerable performance, in
hich the polarization effects are evaluated by the embedded charges. On the other hand, the incorporation of embedded
harges makes each energy gradient element in the Hessian matrix influenced by the contribution of all of the remaining
toms, and thus much attention is required for dealing with the energy gradient or the Hessian matrix. In addition, the
ispersion interaction and many-body exchange are essential effects in many-body embedded schemes, which must be
onsidered in further research.
Since the report of the first HDNN is suitable for high-dimensional systems, many improvements have been made in

he construction of ML PESs, especially NN ESPs. Constantly constructed MLPs have reached a considerable accuracy for
omputational physics and chemistry. A main advantage of ML approaches is the capability to be introduced to a series
f systems in the same way, and thus extensive experience is not required for new model construction. A list of MLPs
hat have received wide attention is shown in Table 2.3, in which the MLPs are suitable for a wide range of systems and
re easily applied for various properties. The computational cost of ML predictions is determined by the acquisition of
raining data and the training process, which also significantly influence the prediction accuracy. Therefore, large and
igh-quality datasets, new powerful ML methods that are capable of making predictions with a small amount of data
nd careful validation are strongly required and have become challenges for ML applications in the field of physics and
hemistry. Other challenges remain in a substantial effort for ML model development, and the selection bias encoded
n many training datasets is another serious problem lurking behind rigorous and robust statistical learning curves. In
ddition, several challenges remain in constructing transferable and accurate ML-based QM models of electron densities,
etermining the irreducible set of variables and assuring constant prediction errors. Currently, apart from improving the
L methods and descriptors, integrating ML-QM models across different levels of theories is expected to be a promising

esearch direction. Currently, the development of ML-driven QM models has become a popular research field, leading to
arious reports for new models. Predictably, the rapid development and improvement in ML methods and descriptors can
xtend the range of applications of ML-driven QM models in the near future.

. Predictions of inorganic small molecules and crystals

Predictions of molecular crystals under high pressures have been a significant topic for numerous new materials and
ovel phenomena. For years, substantial efforts have been made to develop efficient methods with accurate DFT, MP2
r even CCSD(T) levels, which advances the electronic structure methods with dispersion corrections, post-HF models,
ragment-based QM methods and ML-based QM methods. With a high precision and efficiency, fragment-based QM
ethods have been widely applied in the predictions and explanations of inorganic small molecule crystals at a high
ressure. For example, fragment-based QM DFT/MP2 methods were successfully applied in the prediction of crystal
tructures, EOS, vibrational spectra and phase transitions for small molecules, such as carbon dioxide (CO2) [13–15], ice
H2O) [17–21], carbon monoxide (CO) and solid ammonia (NH3) [22]. High-pressure conditions also have the chance to
ake small molecules superconducting and super-hard. Apart from high pressure conditions, new phases, structures, and
roperties under negative pressures are also interesting. For example, in recent years several new phases of ice under a
egative pressure (virtual ices) have been reported and widely investigated using QM methods. As discussed in Section 2,
he periodic DFT/MP2 methods require a significant computational cost with an extremely steep complexity scaling.
ragment-based QM methods significantly reduce the computational cost while maintaining a high level of accuracy.
owever, the requirement of high-level electronic structure methods for maintaining a sufficient accuracy and rapid
rowth of the number of fragments result in a great increase in the computational cost for large crystal systems. In
hat case, with considerable accuracy and extremely low computational cost, ML methods, especially NNs, have been
idely applied to computational physics and chemistry to accelerate the prediction of small molecular properties, PESs,

nd phase transitions.
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.1. Small molecules at high pressures

For decades, numerous new phases and novel phenomena of crystals have been predicted and determined under
xtremely high pressures. Small molecules and corresponding crystals have attracted considerable attention for their
hysics and abundant polymorphs at high pressures. For years, all-atom QM methods, fragment-based QM methods, and
L-driven methods have been widely used for the predictions of crystal structures, structural stability, EOS, vibrational
pectra, and phase transitions. These methods can be applied to a wide range of small molecules and corresponding
rystals at various conditions, such as two-atoms (H2, N2, CO, etc.), three-atoms (CO2, H2O, H2S, etc.), four-atoms (NH3,
CHO, etc.) and multi-atoms (CH4, etc.) compounds. For example, these QM methods have present considerable success
hen being applied to solid CO2, H2O, CO and NH3 for structures and properties predictions.
CO2 is the major ingredient of the atmospheres of terrestrial planets (such as Mars and Venus) and is usually found

n crystal form in asteroids and planets [191–193]. Despite decades of extensive experiments and theoretical simulations,
he structure, properties, and phase diagram of carbon dioxide under extreme pressures and temperatures are yet to be
roperly understood. In addition, H2O is of great importance to the astrophysics and geophysics of planets and satellites,
any of which apparently exist in satellites of giant planets, such as Ganymede and Callisto, as well as the nuclei of
omets [194,195]. The structures and properties of H2O under extreme conditions have exploded in popularity for decades
ue to its richness of structures and complex phase diagrams [18,195]. In addition, the physics fundamentals of CO crystals
nd structural differences are of great fundamental and practical significance, not only because of their high toxicity but
lso because of their therapeutic potential and important signaling capabilities in physiological and pathophysiological
ituations. Despite decades of theoretical research, the crystal structures of solid carbon monoxide polymorphs and the
ransitions between polymorphs at the atomic level are still far from being well understood. In addition, NH3 is one
f the most basic components on the planet, and its high-pressure characteristics play an important role in planetary
cience [196,197]. Solid ammonia crystals frequently adopt multiple distinct polymorphs exhibiting different properties.
redicting the crystal structure of these polymorphs and under what thermodynamic conditions these polymorphs are
table would be of great value to the environmental industry and other fields. Decades ago, lattice dynamics, infrared
pectroscopy and Raman spectra were used to determine the crystal structures and phase transitions of small molecules
nder high-pressure conditions [198–201]. However, these methods suffer a challenge in providing accurate and detailed
escriptions and explanations of crystal properties and phase transition conditions. In recent years, periodic QM methods
nd fragment-based QM methods have been widely used for predicting small molecular crystals under high-pressure
onditions, including EOS, vibrational spectra, crystal structure and phase transition.

quation of state (EOS)
Small molecules, such as CO2, H2O, CO, NH3, CO and N2, usually possess very rich phase diagrams, containing a great

umber of phases under a high pressure. For a long time, however, the knowledge of these phase diagrams was limited,
ith crystal structures and phase transition boundaries far from being clearly determined. With the development of

ragment-based QM methods, much effort has been made toward predicting and determining the crystal structures,
tructural parameters, properties and phase transitions of small molecular crystals under extreme conditions. In 2019, Li
t al. [7,15] introduced an ab initio approach that combines an improved fragment-based method and electronic structural
ethod (MP2) for the prediction of solid CO2 at high pressure. After full structural optimization, this approach successfully
onfirmed the crystal structure of solid CO2 phases I, II and III and predicted their phase transitions, which matched the
xperimental results very well. Fragment-based QM methods have also been applied to other small molecules, such as
olid NH3 and ice, for the prediction of lattice parameters and EOSs. In 2019, Huang et al. [14] performed a theoretical
nvestigation on solid CO2 phase VII and solid NH3 phases I and IV [22] for the prediction of EOSs using an embedded
eneralized molecular fractionation (EE-GMF)-based QM method with an accuracy of the MP2 level. Very recently, Xu
t al. [17] predicted the EOSs of ice phases IX and XIII in the pressure range of 0–0.5 GPa using the MP2-based fragment
ethod. In the same year, Xiao et al. [19] presented the lattice parameters and EOSs of ice phases XV, XIV, and VIII. In
ddition, Lu et al. [18] predicted the lattice parameters and EOSs for a series of ice crystals at high pressure, including
hases II, VI, VII, VIII, IX and XV. Han et al. [183] predicted the EOSs of ice phases IX and XV using an NN-based fragmental
ethod with the accuracy of the MP2 level. The crystal structures and predicted EOSs of solid CO2 (phases I, II, III, and
II) and ice (phases IX, XV, VIII and XIV) are shown in Fig. 3.1.

hase transition
Apart from EOSs, the prediction of phase transition boundaries is also a main application of fragment-based QM

ethods. Fig. 3.2 shows the predicted and observed phase diagrams of solid CO2 and H2O, which are taken from the
ork by Han et al. [15] and Lu et al. [18]. In 2019, Han et al. successfully determined the crystal structure of the solid
O2 phase II and predicted the phase boundaries of solid CO2 phases I–III and II–III at a pressure range of 10–20 GPa. As
arly as 2017, solid CO2, phases III and VII, were suggested by Sontising et al. [202] to be identical with a comparison
f theoretical predictions and previous experimental results. In 2019, however, Huang et al. [14] predicted the phase
ransition between solid CO2 phases I and VII with the existing crystal structures. Currently, the crystal structure of CO2
hase VII has not been determined, and further investigation is required. In 2020, much effort was made to predict phase
ransitions between solid ices under high pressure. Xiao et al. [19] investigated ice phases XV, XIV and VIII and predicted
hat a triple point of phase transition occurs at approximately 1.258 GPa and 112 K. Soon after, Lu et al. [20] predicted
17
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Fig. 3.1. Crystal structures and volume–pressure relationships of solid CO2 and ice phases. A. (a) Crystal structures and (b) volume–pressure
relationships of solid CO2 phases I, II, III and VII. B. (a) Crystal structures and (b) volume–pressure relationships of ice phases IX, XV, VIII and
XIV, reproduced from the works by Han et al. [183] ( c⃝ 2021 American Physical Society), and Xiao et al. [19] ( c⃝ 2020 Elsevier), respectively.
Source: A. Reproduced from the works by Han et al. [15] and Huang et al. [14], respectively.

the phase transition of a series of ices, including ordered phases II, IX, VIII and XV and hydrogen-disordered phases VI
and VII. In addition, Huang et al. [22] also presented the phase transition of solid NH3 between phases I and IV using a
fragment-based QM method along with a complete basis set correction (CBS) at the CCSD(T) level. In these theoretical
works, the phase transition between two crystal structures is determined using a Gibbs free energy comparison, which
was calculated by the fragment-based QM method. Fig. 3.3 shows the Gibbs free energy surfaces of solid CO2 phases I–III
(Fig. 3.3(a)), II–III (Fig. 3.3(b)), and I–IV(Fig. 3.3(c)) and ice phases VIII, XIV and XV (Fig. 3.3(d)), which were reported
by Han et al. [15], Huang et al. [14], and Xiao et al. [19], respectively. With these energy surfaces, the phase transition
boundary can be obtained from the intersection of the two surfaces.

Vibrational spectra
As a distinct chemical fingerprint from a particular crystal or molecule, Raman vibrational spectra can be used to

rapidly identify the crystal and distinguish it from others. Several theoretical works for predicting phase transitions also
18
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Fig. 3.2. Calculated phase transition boundaries and measured phase diagram of (a) solid CO2 (phases I, II, and III) and (b) ice (phases II, VI, VII,
III, IX, and XV).
ource: Reproduced from the works of Han et al. [15] and Lu et al. [18], respectively.

eproduced the Raman spectra. Along with phase transition prediction, Han et al. [15] reproduced the Raman spectra in the
ibrational regions of solid CO2 phase I at 11.7 GPa, phase II at 26 GPa, and phase III at 26 GPa, which were then compared
ith the experimentally observed spectra and presented good consistency with these experimental results in terms of
he number and positions of peaks. For CO2 phase VII, Huang et al. [14] reproduced the Raman spectra at 12.6 GPa with
he optimized crystal structure as evidence for the correctness of the existing structure. In ice prediction works, Raman
pectra were also used to confirm the optimized crystal structure. For example, Xiao et al. [19] compared the calculated
aman spectra of ice phase XV (0.9 GPa), XIV (1.2 GPa), and VIII (2.8 GPa) with the related observed results, which shows
good agreement between them. Similarly, Lu et al. [18] calculated the Raman spectra of ice II at 0.27 GPa and 0.28 GPa
nd compared them with experiments in the librational region and stretching region. The calculated and observed Raman
pectra of solid CO2 and ice are shown in Fig. 3.4, including CO2 phases I, II, and III (Han et al. [15]), CO2 phases I and VII
(Huang et al. [14]), H2O phase I (Lu et al. [18]), and H2O phases XV and VIII (Xiao et al. [19]). In addition, several works
also provided the calculated and observed frequencies of Raman bonds depending on the pressure. For example, Huang
et al. [14] demonstrated maximum errors of 5.9% for CO2 phase I and 6.5% for phase VI between their calculated frequency
and experimental results. The predicted frequencies of Raman bands depending on the pressure for solid CO2 are shown
in Fig. 3.5, which are taken from the works of Han et al. [15] and Huang et al. [14].

As discussed above, fragment-based QMmethods have been widely applied in predicting small molecular crystals (such
as CO2, H2O and NH3) at a high pressure for the significant decrease in the computational cost as a powerful research
tool that complements the experiment. Notably, the mentioned works were performed using the fragment-based method
and electronic structure method (MP2). Huang et al. [22] also performed a CBS correction at the CCSD(T) level to improve
the quality of the calculations. Within the framework of these fragment-based QM methods, any electronic structure
method (such as DFT, MP2, CCSD(T)) can be used as the QM method for the calculation of different orders of many bodies.
Therefore, the accuracy of these fragment-based QM methods can be increased by using high-level electronic structure
methods, which will result in a significant increase in the computational cost. Attention strongly needs to be paid to the
balance between accuracy and efficiency.

3.2. Small molecules at negative pressures

Ice and clathrate ice are omnipresent in the solar system, including Earth, comets, icy moons of the giant planets,
and asteroids. Depending on the pressure and temperature conditions, ice presents an extremely rich and complicated
19
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Fig. 3.3. Calculated Gibbs free energy surfaces of solid CO2 (a) phase I (black surface) and III (blue surface), (b) phase II (red surface) and III (blue
surface), (c) phase I (red surface) and VII (blue surface) and (d) ice phase XV (cyan surface), XIV (blue surface) and VIII (red surface).
Source: (a) (b) are reproduced from Han et al.’s work [15], (c) is reproduced from Huang et al.’s work [14], and (d) is reproduced from Xiao et al.’s
work [19].
© 2020 Elsevier.

phase diagram with seventeen crystalline polymorphs. Among these ices, phases XI and Ih [203] are located at a low
pressure and slightly negative pressure in the phase diagram [204] with a low mass density (0.94 g/cm3). Clathrate
ice, a clathrate compound with the inclusion of guest molecules, also exhibits a series of different polymorphs that
are stable under the Earth’s oceans and abundant on comets and asteroids of the solar system [205]. As co-crystals,
the crystallization of clathrate hydrates requires guest atoms or molecules. The unique inner cavities and low mass
density mean the clathrate hydrates are expected to remain stable under a negative pressure. Early clathrate hydrates
usually require guest molecules to keep the structure stable via vdW interactions with host water molecules, such as
tetragonal structure III [206], cubic hydrate structures sI [206,207] and sII [208], hexagonal hydrate structure sH [209],
and tetragonal hydrate structure sT [210] at a high pressure. In recent years, guest-free clathrate hydrates have drawn
significant attention since Falenty et al. [205] (2014) introduced ice XVI, a guest-free clathrate obtained by excluding the
Ne atoms from a type sII clathrate hydrate. Subsequently, several guest-free clathrate hydrates were reported to complete
the phase diagram of ice at a negative pressure, including phases sIII [211], sIV [212], sL [213], ITT [214], dtc [215] and
EMT [204]. As research progresses, a series of new structures of clathrate ices have been determined [216], but their
locations on the phase diagram are still unclear. Fig. 3.6 shows the eight structures of clathrate ices at a negative pressure
and one ice crystal XI. Recently, QM methods and MM simulations have been used to investigate the crystal structure
20
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Fig. 3.4. Calculated and observed Raman spectra of (a) solid CO2 phase I–II–III, (b) solid CO2 phase I–VII, (c) ice phase I, and (d) ice phases XV, VIII.
ource: Reproduced from the works of Han et al. [15], Huang et al. [14], Lu et al. [18], and Xiao et al. [19], respectively.
2020 Elsevier.

nd phase diagram of clathrate ice under negative pressures. In 2016 [211] and 2017 [212], Huang et al. reported two
ew clathrates (sIII and sIV) and predicted phase diagrams using DFT calculations and Monte Carlo simulation with the
YP4P model. In 2017, Matsui et al. [214] examined three types of low-density ices (zeolitic ices, space fullerene ices, and
eroices) and demonstrated that the ITT and sII hydrates are the most stable phases for zeolitic ices and space fullerene
ce, respectively, and aeroices are the most stable solid phases of water near the absolute zero temperature under a
egative pressure. Soon later, with first-principal calculations Liu et al. [213] (2018) reported a new phase of ice (sL) with
n ultralow density (0.6 g/cm3), which is predicted to be stable under a low negative pressure. Next year, Liu et al. [204]
etermined ultralow-density porous ice (EMT, ∼60% of the mass density of ice XVI) with the largest internal cavity using
oth DFT calculations and Monte Carlo simulations. In 2019, Matsui et al. [215] demonstrated that the limit of mechanical
tability for the crystalline phases will terminate the region of the most thermodynamically stable phase in the phase
21
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Fig. 3.5. Predicted frequencies of Raman bands of solid CO2 (a) phase II, and (b) phase I and VII.
Source: Reproduced from the works of Han et al. [15], and Huang et al. [14], respectively.

diagram and presented a very complicated diagram of low-density ice phases at negative pressure. In the same year,
Yagasaki et al. [217] presented a novel ice crystalline structure with hypothetical dtc zeolite topology using an all-atom
MD simulation. Very recently, high-level QM methods have been used for clathrate hydrates. Using the MP2 and CCSD(T)
methods combined with fragment-based methods, Lu et al. [20] (2021) investigated nine empty clathrate hydrates of ice
(sII, sIII, sIV, sH, sL, dtc, EMT, ITT and ice XI) at negative pressures. Based on structure optimization and Gibbs free energy
calculations, they presented a renewed phase diagram of ice at negative pressures, as shown in Fig. 3.7.

As discussed above, the accurate crystal structure and complete phase diagram at a negative pressure are still not fully
determined, and further in-depth research is also required. As fragment-based methods progress, high-level QM methods
combined with fragment-based methods will substantially benefit from investigations.

3.3. Superconducting and super-hard molecules at high pressures

Superconducting and super-hard materials are essential for a myriad of scientific, biomedical, and industrial ap-
plications. The contradiction between covalent bonds in super-hard materials and metallic bonds in superconductors
makes superconductivity and super-hardness in the same material a very interesting and precious effect. Their zero-
resistance and anti-pressure abilities stem from the relationship between the crystal structure, chemical composition,
and microstructure. The complexity of this interdependence limits researchers to conduct comprehensive experimental
investigations but can be supported by theoretical calculations. Generally, low-temperature superconductivity [218]
is more practical than high-temperature superconductivity. However, these low-temperature superconductors require
liquid helium temperature conditions, which significantly limits their applications. Years ago, with the establishment of
the electron–phonon mechanism of superconductivity based on the Bardeen–Cooper–Schrieffer (BCS) [219] theory, the
multiband effect [220,221] based on electronic structure, and the McMillan equation, the prediction of superconducting
has become practical. In particular, ultrahigh pressure is considered to be physical doping by influencing the electronic
structure of covalent molecules. The breaking of bipolarons in the flat/sleep band model is a good description of
superconductors induced by ultrahigh pressure [222,223].

In 2017, based on the CSP method and QM calculations, Liu et al. [224] demonstrated that the stable hydrogen-rich
phases exhibited unusually high superconducting temperatures at a high pressure, such as La–H and Y–H systems. For
example, LaH10 is predicted to be stable above 200 GPa with a sodalite-like face-centered cubic (fcc) structure, with a
very high superconducting transition temperature of 274–286 K at 210 GPa. This study suggests that density hydrides may
represent a new class of potential very high-temperature superconductors. In the same year, Peng et al. [225] predicted
22
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Fig. 3.6. Structures of eight clathrate ices (in plane view) at negative pressures, including phases sII, sIII, sIV, sH, sL, ITT, dtc and EMT, compared
ith one high-pressure ice phase XI.
ource: Reproduced from the work by Lu et al. [20].
2021 Elsevier.

hat a YH32 clathrate structure of stoichiometry YH10 is a potential room-temperature superconductor with a predicted Tc
f up to 303 K at 400 GPa using first principles. In 2019, Zhao et al. [226] studied Li-rich phosphides using first-principles
warm structure calculations and predicted that a pressure-induced stable Li6P electride was a superconductor with a
uperconducting transition temperature Tc of 39.3 K.
Recently, ab initio methods have been applied to the investigation of superconducting and super-hard materials,

especially the lightest oxygen group hydride H2O. With a general ab initio method, Lu et al. [21] (2020) investigated
the superconductivity of the structures [227] of ice with space groups Pmc21, P21 and C2/m at terapascal pressures and
demonstrated that the structure of Pmc21 is energetically stable above 930 GPa and will transform to a P21 structure above
1.3 TPa. As the pressure increases, the P21 structure will remain stable until 4.28 TPa and turn into a metallic structure
C2/m above 4.28 TPa. They also calculated the electronic band structures and density of states (DOSs) at the Fermi level
and the electron localization functions (ELFs) of the three predicted structures at the terapascal pressure, as shown in
Fig. 3.8, which were then used for the analysis of superconductivity and super-hardness. They predicted that the ice was
super-hard with space group P21or C2/m above 1.3 TPa and turned into a superconductor (Tc: 1.782 K) with space group
C2/m as the pressure increased to 5.0 TPa. Generally, superconductors are metallically bonded, but super-hard materials
are covalently bonded with strong orientations and large bond energies. -Superconductivity and super-hardness existing
in the same structure (C2/m) of ice is a very interesting phenomenon that is worth further in-depth studies with the
progress of QM methods.
23
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Fig. 3.7. Predicted phase diagram of clathrate ices at negative pressures in the range of −0.8 GPa to −0.1 GPa. (a) Calculated relative enthalpies
referenced to the enthalpy of ice XI) of clathrate ices sH, sL, sII, sIII, sIV, EMT, ITT and dtc depending on pressure. (b) Calculated phase diagram of
ce XI and clathrate ices sII, dtc and EMT.
ource: Reproduced from the work by Lu et al. [20].
2021 Elsevier.

.4. ML potential energy surfaces for small molecules

As discussed in Section 2.3, a series of ML methods for constructing PESs have been proposed, such as HDNNP [184],
NI [185], TensorMol [186], DeepMD [187], TorchANI [189], AP-Net [190] and PIP [188]. ML PESs have become a
ignificantly important tool for accelerating QM investigations in computational physics and chemistry, especially for
olecular crystals. In recent years, with the great abundance of data and the continuous development of ML methods
nd chemical descriptors, ML PESs and force fields have been widely used for predicting energy-related properties or
eactions for various inorganic small molecules, such as vibrational energies, H-bonds, spectra, transmission coefficients,
ate coefficients of reactions, and excitation frequencies.

In 2006, Manzhos et al. [229] successfully fitted NN PESs for several three- and four-atom molecules, including H2O,
OOH and H2CO, with root-mean-square errors (RMSEs) less than 2 cm−1. The low-lying levels have 1 cm−1 of the exact
esults for all molecules, which is achieved with multiple NNs by first fitting a rough NN PES and then fitting an NN to
24
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Fig. 3.8. Calculated electronic band structures and density of states (DOSs) at the Fermi level, and electron localization functions (ELFs) of ice at
erapascal pressures. A. shows the (a) electronic band structures, (b) DOSs and (c) the ELFs with (010) plane of the Pmc21 structure (at 1 TPa). B.
hows the (a) electronic band structures, (b) DOSs and (c) the ELFs with (001) plane of the P21 structure (at 4 TPa). C shows the (a) electronic band
tructures, (b) DOSs and (c) the ELFs with (001) plane of the C2/m structure (at 5 TPa).
ource: Reproduced from the work of Lu et al. [21].
2020 John Wiley and Sons.

he energetic difference at fitting points and values on the rough PES. This small PES is considered to be the beginning for
ultiple NNs being applied to PES constructions. Although the accuracy of the potential surface fitting can be improved by

ncreasing the number of neurons, this may lead to overfitting. In a multidimensional space, this potential energy surface
ccuracy is usually not representative of the overall accuracy. As shown in Manzhos’s work, the adoption of multiple NNs
s an effective method for addressing this problem.

In 2017, using 638 data points calculated with CCSD(T)/cc-pVQZ(-g), Pradhan and Brown [230] fitted a six-dimensional
6D) NN PES of HONO in a sum-of-products form, which contains the cis- and trans-isomers and the related transition
tates. They also proposed another PES based on QM data calculated using the CCSD(T) approach with the complete basis
et (CBS) correction. For this model, the vibrational energies were used for model validation, which were then calculated
y the block improved relaxation combined with the multiconfiguration time dependent Hartree (MCTDH) method, which
ere compared with the experimental results, and previous calculations with the MP2/aug-cc-pVTZ and CCSD(T)/aug-cc-
VTZ levels of accuracy. In the same year, Guan et al. [231] reported an NN model for solving the mixing angle for the
iabatization of the lowest two electronic states of LiFH based on ab initio adiabatic energies and derivative couplings,
hich is only suitable for two electronic states without crossing. Two years later, Guan et al. [232] introduced a modified
N model for predicting adiabatic energies, energy gradients and derivative couplings accurately based on the Zhu–
arkony diabatization strategy, which is potentially applicable for multiple-state diabatization with avoided crossings. In
ddition, in 2018 Yuan et al. [233] also proposed accurate derivative-based diabatic NN PESs for the H3 system by solving
he three-dimensional Poisson equation. In 2019, Yin et al. [228] developed a procedure for fitting coupled two-state
iabatic PESs with conical intersections based on nonadiabatic couplings using a general NN. The outputs of NN PESs and
he diabatic potential energy matrix (DPEM) are calculated by first solving the adiabatic-to-diabatic transformation (ADT)
ngle for each geometry and then fitting individual NNs for the three terms of the DPEM. Then, they used this procedure
o construct the two-state diabatic PES of ClH2, which presents a high fitting accuracy and a reliable representation of
25
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Fig. 3.9. Contour plots of the fitted diabatic PESs and adiabatic PESs. (a) (b) The diabatic PESs (W11 , and W11) and (c) (d) the adiabatic PESs as
unctions of RCIH and the enclosed angle of the two equal RCIH in C2v geometries. (e) (f) The diabatic PESs as functions of Jacobi R and r in the
ollinear geometries.
ource: Reproduced from Yin et al.’s work [228].
2019 Royal Society of Chemistry.

he vicinity of conical intersections. Fig. 3.9 shows the fitted diabatic PESs and adiabatic PESs (W11 and W11) as functions
f RCIH and the enclosed angle of the two equal RCIH values in C2v geometries as well as the diabatic PESs as functions of
acobi R and r in collinear geometries, which is reproduced from Yin’s work.

In 2019, Sauceda et al. [234] introduced the construction of molecular force fields for small molecules containing no
ore than 25 atoms using the symmetrized gradient domain machine learning (sGDML) [167,235] model, which is a fully
ata-driven universal approximator for describing any kind of quantum interaction. High-dimensional manifolds in the
raining dataset are obtained from a few samples, which allows for calculating these data with high-level QM methods
uch as CCSD(T). The accuracy of these force fields was evaluated by ubiquitous and challenging features of general interest
n chemical physics, including intramolecular hydrogen bonds, proton tunneling effects, electrostatic interactions, electron
one pairs, and other electronic effects. An overview of different types of molecules and the corresponding PESs along
26
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Fig. 3.10. An overview of different types of molecules and corresponding PESs along two relevant torsional degrees of freedom, free energy surface
(FES) at 300 K, type of intramolecular hydrogen bonds, vibrational spectrum at 300 K, and type of electronic effect.
Source: Reproduced from Sauceda et al.’s work [234].
© 2019 AIP Publishing.

two relevant torsional degrees of freedom, free energy surface (FES) at 300 K, type of intramolecular hydrogen bonds,
vibrational spectrum at 300 K, and the type of electronic effect are shown in Fig. 3.10.

In addition, NN PESs can also be applied to the MD study of chemical reactions. For example, using the permutationally
invariant polynomial NN (PIP-NN) method, Liu and Li [236] (2019) proposed a globally accurate full-dimensional PES
for the reaction Cl + CH4 → HCl + CH3 based on 74000 QM data with a CCSD(T) level of accuracy. To evaluate the
performance of this PES model, kinetic isotope effects (KIEs) and thermal rate coefficients were calculated for the Cl +

CH4 → HCl + CH3 and Cl + CD4 → DCl + CD3 reactions using the ring polymer MD (RPMD) approach with the proposed
PES, which is consistent with the experimental results. Fig. 3.11 shows the transmission coefficients (Fig. 3.11(a) (c)) and
the rate coefficients (Fig. 3.11(b) (d))of reactions Cl + CH4 → HCl + CH3 and Cl + CD4 → DCl + CD3.

Apart from the widely used NN approach, other ML methods have also been applied for constructing PESs. For example,
the GPR algorithm combined with the adaptive density guided approach (ADGA) has been used for PES construction based
on physical information and statistical analysis of the data at the MP2/CCSD(T) level. Schmitz et al. [237] evaluated the
performance of this GPR-ADGA model on nine three- and four-atomic molecules, such as H2O, H2CO, and H2S, and one
five-atomic molecule (formic acid). The fundamental excitation frequency calculations on conventional and GPR-ADGA
PES show good agreement with the RMSD below 2 cm−1. In 2018, Hu et al. [238] constructed an on-the-fly PES using
KRR, and Dral et al. [239] also used KRR for excited state dynamics involving surface hopping.

As we discussed above, ML methods have been a powerful tool for constructing PESs and further chemical studies
of small molecules [240]. We cannot list all applications of various ML methods in PES construction in this review,
but only present some representative applications in recent years, as shown in Table 3.1. Other successful applications
include PIP-GPR constructing high-dimensional PESs [241], Behler–Parrinello NNs (BP-NNs) for predicting interaction
energy with symmetry adapted perturbation theory (SAPT) [242], GPR reconstructing free energy surface (FES) [243],
NNs fitting PESs for studying Diels–Alder reaction [244], fundamental invariants (FI) NNs constructing PES for the H2 +
27
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Fig. 3.11. Transmission coefficients at different temperatures and rate coefficients for different reactions. (a) The transmission coefficients (at the
temperature conditions of 200, 300, 400, 600, 800, 1000, 1100, 1500, 2000 K, respectively), and (b) the rate coefficients for the reaction of Cl + CH4

HCl + CH3 . (c) The transmission coefficients (at the temperature conditions of 200, 300, 400, 600, 800, 1000, 1100, 1500, 2000 K, respectively),
nd (d) the rate coefficients for the reaction of Cl + CD4 → DCl + CD3 .
ource: Reproduced from the work by Liu and Li [236].
2020 Royal Society of Chemistry.

S → H2S + H reaction [245], high-dimensional NN PESs for CO2–Pt(111) interaction [246], full-dimensional NN PESs
or the rate coefficients of reactions [247], and GPR constructed PESs for free energy landscape and reconstructive phase
ransition [248]. With the rapid development of ML methods, PES construction via ML has become a popular research
rea promoting chemical research, with potential applications in predicting the potential energy, free energy, vibrational
nergy, diabatic potential energy, thermal rate coefficients and KIEs in chemical reactions and intermolecular interaction
nergy.
On the other hand, using an ML model to train a PES of a system usually requires numerous and high-quality chemical

ata either calculated by high-level QM methods or obtained by experiments. The dataset should cover the relevant
ressure and temperature conditions, compositions, polymorphs, and reaction pathways for full PES construction [46,49,
49–251]. In addition, much attention needs to be paid to avoiding numerical noise, which will influence the smoothness
f PES and result in discontinuities [252–254]. Most importantly, ML PESs usually suffer restrictions on the time scale
nd system size, which significantly limits their application to large systems. Nevertheless, the continuous development
f ML methods and descriptors will advance the applications of PESs in computational physics and chemistry.

.5. ML accelerates the QM predictions of properties and phase transitions

In Section 3.4, we discussed the PESs constructed using various ML methods, such as GPR, sGDML NN and related
ariants, for different usages. ML PESs are usually designed for small molecules and clusters. In recent years, apart
rom PESs, some ML applications include the prediction of properties, such as energies and structures, with previous
xperimental or computational results feeding in the models.
In 2019, Tawfik et al. [255] introduced complementary ML methods combined with property-labeled material fragment

escriptors to rapidly and reliably predict the thermal properties of crystals, such as entropy, specific heat, effective
olycrystalline dielectric function and nonvibrational properties. In practice, the RF, SVM [256], the relevance vector
achine (RVM) [257], the Huber regression algorithm [258], the XGBOOST algorithm [259], and the feed-forward back-
ropagation NN [260] are used for the prediction. As Table 3.2 shows, the ML methods exhibit good performance for
28
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Table 3.1
List of notable PESs constructed with ML methods, including the author and year of first report, research system, type of
methods, and applications of the PESs.
Year Systems Method Applications

Manzhos et al. [229] (2006) H2O, HOOH, and H2CO 6-D NNs Potential energy and vibrational spectra
Pradhan and Brown [230] (2017) HONO 6-D NNs Vibrational energies and frequencies
Guan et al. [231] (2017) LiFH NNs Diabatic PESs and mixing angles
Yuan et al. [233] (2018) Reaction of

H+HD→H2+D
NNs Total energy and geometric phase (GP)

Guan et al. [232] (2019) LiFH NNs Adiabatic energies, energy gradients and
interstate couplings

Liu and Li [236] (2019) Reactions of
Cl+CH4→HCl+CH3 and
Cl+CD4→DCl+CD3

PIP-NN Thermal rate coefficients and kinetic
isotope effects

Yin et al. [228] (2019) ClH2 NNs Two-state diabatic PESs, adiabatic
energies and derivative couplings

Sauceda et al. [234] (2019) small molecules
containing less than 25
atoms

sGDML PES, FES, H-bond, spectrum and
electronic effects

Schmitz et al. [237] (2019) Nine three- and
four-atomic molecules

GPR-ADGA Excitation frequencies

Metcalf et al. [242] (2020) Hydrogen-bonded dimers BP-NNs Interaction energies
del Cueto et al. [246] (2020) CO2–Pt (111) interaction BP-NNs Geometry and energy
Zuo et al. [247] (2020) Reactions of H+O3 and

HO2+O
PIP-NN Thermal rate coefficients

Tong et al. [248] (2021) GaN GPR Free energy landscape and
reconstructive phase transition

Table 3.2
The mean absolute relative errors (MAREs), RMSEs and the coefficient of determination (R2) for the specific heat (CV)
in units of meV/K/atom, the entropy (S) in units of meV/K/atom, and the trace of the effective polycrystalline dielectric
function (εeff) in different ML models.
Source: Reproduced from Ref. [255].

ML model Dataset CV S εeff

MARE (%) RMSE R2 MARE (%) RMSE R2 MARE (%) RMSE R2

RF Test 10.9 0.19 0.88 18.2 0.39 0.85 17.1 4.85 0.66
Train 4.6 0.09 0.97 6.5 0.16 0.97 7.1 2.46 0.93

SVM Test 14.4 0.24 0.81 15.7 0.36 0.87 18.4 4.70 0.68
Train 8.3 0.11 0.95 9.1 0.17 0.97 9.1 3.40 0.86

RVM Test 12.4 0.22 0.84 13.8 0.32 0.90 17.6 4.57 0.70
Train 2.9 0.04 0.99 3.4 0.08 0.99 7.6 1.58 0.97

Huber Test 13.1 0.23 0.83 13.2 0.34 0.89 17.9 5.35 0.58
Train 8.1 0.16 0.90 7.5 0.23 0.94 11.6 4.33 0.77

XGBOOST Test 11.1 0.18 0.89 14.9 0.33 0.89 16.8 4.87 0.65
Train 0.0 0.00 1.00 0.0 0.00 1.00 0.0 0.01 1.00

NN Test 12.4 0.20 0.88 14.5 0.31 0.90 17.9 4.41 0.72
Train 0.8 0.06 0.99 1.1 0.09 0.99 1.2 0.89 0.99

predicting the QM properties with RMSEs of 0.31 meV/K/atom for entropy, 0.18 meV/K/atom for specific heat, 0.5 eV
for the band gap and 4.41 for the trace of the dielectric tensor, which shows potential applications for screening a large
number of crystals for properties of interest. Very recently, Loftis et al. [261] (2021) proposed a genetic programming-
based symbolic regression (SR) model to predict the lattice thermal conductivity (κL), which shows a higher accuracy than
he traditional Slack formula [262]. Compared with PESs, these direct predictive ML models are more straightforward and
asier to understand, and even have a better performance for a particular property but are usually less transferable.
On the other hand, as discussed in Section 3.1 the crystal structures, properties, and phase diagram of solid crystals

nder extreme conditions have been a topic of extensive study for decades. Substantial progress has been made on the
redictions of solid–solid phase transitions with QM methods and fragment-based QM methods. However, the extreme
omputational cost greatly restricted the fast in-depth determination of the crystal phase diagram. In a general fragmental
cheme, for accuracy consideration the low-order (such as one- and two-order) terms need to be calculated using high-
evel electronic methods, such as MP2 and CCSD(T), which is the main reason for the extreme computational cost.
otivated by this problem, NN PESs with an accuracy at the level of MP2 or CCSD(T) are introduced to the rapid
alculations of low-order terms in the fragment-based method for predicting large crystalline systems.
In 2020, Han et al. [183] introduced a newly efficient approach based on NN PESs and an improved fragmental method

o predict the Gibbs free energy, structural parameters, EOS, and thus the phase transition of molecular crystals. Fig. 3.12
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Fig. 3.12. Flow diagram of the approach combining NN PES and fragment-based method for the prediction of energy and various properties of
molecular crystals.
Source: Reproduced from Han et al.’s work [183].
© 2021 American Physical Society.

shows the flow diagram of the proposed approach. The PESs are trained using DeepMD based on data of one- and two-body
energy and forces calculated at the MP2 or CCSD(T) level. Then, these PESs are integrated into an improved fragment-based
model that can be used to calculate the energy, force, and other properties of a molecular crystal.

Then, this approach is evaluated by performing the predictions and structure optimizations of ice at a high pressure. The
PESs of one- and two-body H2O were constructed based on the data calculated at the MP2 level of accuracy. These NN PESs
exhibited considerably low RMSEs (0.0029 kcal/mol for one-body energy, 0.0353 kcal/mol/Å for one-body force, 0.0429
for two-body energy and 0.9782 for two-body force), which provides assurance of the accuracy of subsequent predictions
by the fragment-based method. The one- and two-body PESs were then integrated into the fragmental method, in which
three-body terms were obtained using low-level QM models. The structural optimization and prediction of the Gibbs free
energy, lattice parameters, EOS, covalent bonds, and phase transition of solid ice IX and XV present a good agreement with
previous experimental results, with RMSEs of 0.55 and 0.32 kcal/mol for the two ice crystal systems. More importantly,
the greatest advantages of this approach are the computational efficiency, which is shown in Table 3.3 As the table shows,
the prediction of the phase transition for ice crystals can reach the MP2 level of accuracy but is tens of times faster than
fragment-based QM methods. Notably, the restriction of computational efficiency mainly comes from the low-level QM
calculations of the three-body terms, providing ideas for further improvements by integrating three-body PES. In addition,
a newly designed fragment-based method suitable for PESs will be helpful for increasing the accuracy and efficiency. In
short, a new way of predicting the phase transition and properties of large molecular crystals using a combination of NN
PESs and fragment-based methods is opened.

4. Predictions of drug molecules and crystals

Energy and structure determination of polymorphs of pharmaceutical molecules are considerable significant in the
chemical and pharmaceutical industries. However, because drug molecules are usually larger than small inorganic
molecules, it is difficult to use all-atomic QM methods. Fragment-based QM methods can divide large crystal systems into
a series of small fragments and can be easily applied to large systems, such as drug crystals with a high precision and
efficiency, including olanzapine, sulfathiazole, di-p-tolyl disulfide, and β-lactam antibiotics. Fragment-based QM methods
have been successfully applied to predicting crystal structures, EOSs, vibrational spectra and phase transitions of drug
molecules and crystals. In recent years, ML methods have also been widely applied to the prediction of drug molecules and
crystals, such as force field construction, chemical shift prediction and CSP. In this section we will introduce the structure,
30
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Table 3.3
Computational costs (the average of three calculations) for monomers, dimers, enthalpy
(energy, force) and free energy (energy, force and force constant) of ices IX and XV.
Source: Reproduced from Han et al.’s work [183].
Calculations MP2 (s) NN-PES (s) Times

100 monomersa 228 0.8 285
1000 monomersa 1978 2.2 899
100 monomersb 3305 27.6 120
100 dimersa 503 1.7 296
1000 dimersa 5073 4.5 1127
100 dimersb 11971 193 62.0
Enthalpya (IX) 3066 439 7.0
Enthalpya (XV) 2075 324 6.4
Gibbs free energyb (IX) 36500 2241 16.3
Gibbs Free energyb (XV) 22828 1621 14.1

aOnly calculate energy and force.
bCalculate energy, force and force constant.

Table 4.1
Crystal structural parameters of olanzapine form I, II, III and IV from experiments and calculations. All computations were performed
on DFT level of ωB97XD/6-31G*.
Form Method Temp. (K) a (Å) b (Å) c (Å) Beta (deg)

Form I Experiment (Reutzel–Edens et al. 2003) [274] 293 10.383 14.826 10.560 100.616
Form I DFT (Luo et al. 2019) [276] 298 10.056 14.702 10.426
Form I DFT (Tang et al. 2021) [277] 298 10.008 14.402 10.420
Form II Experiment (Thakuria et al. 2011) [278] 298 9.913 16.533 9.999 98.023
Form II DFT (Luo et al. 2019) [276] 298 9.737 16.399 9.861
Form II DFT (Tang et al. 2021) [277] 298 9.685 16.314 9.810
Form III Modeled (Bhardwaj et al. 2013) [279] 10.3454 19.5267 16.5280 90
Form III DFT (Tang et al. 2021) [277] 298 9.97508 19.0714 16.1121
Form IV Experiment (Askin et al. 2019) [280] 8.6555 15.4441 2.5558 95.284
Form IV DFT (Tang et al. 2021) [277] 298 8.37334 15.0032 11.9860

stability, vibrational spectra and transformation predictions of several drug molecules using fragment-based QM and the
recent applications of ML methods in large molecules and relevant crystals, including chemical shift predictions, force
field constructions, and CSP.

4.1. Structure, stability, and spectra predictions

Under different physical and chemical conditions, a crystal with a certain chemical composition will crystallize to
arious forms, which is known as polymorphism. The polymorphism of drug molecules usually results in extremely
ifferent chemical and physical properties, including stability, solubility, compressibility and flexibility, which can
nfluence the clinical efficacy [263–266] and safety of the related drugs. During drug design and production, investigating
he polymorphism and determining the structural stability of different polymorphs of drugs were considered to be
f great importance. Substantial progress has been made in CSP, crystal growth [267–270] and property prediction of
olymorphisms [271–273].

lanzapine
For years, substantial attention has been given to polymorphs of olanzapine, a widely used drug molecule with great

fficacy in the treatment of schizophrenia, which is a serious mental illness that afflicts patients for life. Approximately two
ecades prior, the crystal structural parameters of olanzapine form-I were introduced [274]. Based on QM methods and
ragment-based methods, considerable efforts have been made for crystal structure prediction, polymorph transformation,
rystal growth and property prediction [268,275–277].
Approximately two decades prior, the crystal structural parameters of olanzapine form I were introduced [274]. The

rystal structural parameters of form II and form III were reported [278] and modeled [279], respectively, early in the
receding decade [279], two years before Askin et al. reported crystal structural parameters of olanzapine form IV [280].
he observed crystal structural parameters of these four forms are given in Table 4.1. The calculated crystal structure
arameters given in Table 4.1 were optimized by the DFT/ωB97XD/6-31G* level. The experimentally observed crystal

structure parameters of olanzapine are well matched with those calculated by the DFT/ωB97XD/6-31G* level given in
Table 4.1.

The vibrational spectra are considered a fingerprint to recognize the crystal structure of molecules. In polymorphic
molecules, different polymorphic forms have different Raman spectra; hence, each form can be identified by their
characteristic peaks [276,277]. Fig. 4.1A shows the calculated and experimentally observed Raman spectra of olanzapine
31
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Fig. 4.1. Calculated Raman spectra of olanzapine forms at atmospheric pressure condition. A. (a–f) shows the calculated and observed Raman spectra
f (a) (b) form I and (c) (d) form II, and (e) (f) the comparison of calculated Raman spectra of olanzapine forms I and form II ( c⃝ 2019 American
hysical Society). B. shows the calculated Raman spectra of olanzapine polymorphs III and IV at different regions of frequency, which were reproduced
rom the paper of Tang et al. [277] ( c⃝ 2021 Elsevier).
ource: A. Reproduced from the research papers of Luo et al. [276].

orms I and II at atmospheric pressure conditions from Luo et al.’s work [276]. The Raman spectra were calculated via the
FT/ωB97XD/6-31G* level, and the experimental results were taken from Bhardwaj et al.’s work [279]. In Fig. 4.1A, the
urves of the calculated Raman spectra of olanzapine forms I and II are colored red and green, respectively, and the curves
f Raman spectra from experimental observation of olanzapine forms I and II are colored blue and yellow, respectively. As
hown in Fig. 4.1A, the calculated Raman spectra match well with the experimentally determined Raman spectra for both
orms I and II. Fig. 4.1A(a) presents the Raman spectra of olanzapine form I in the region of medium frequency. We can
bserve that characteristic peaks from the experimental results are accurately predicted at 890 cm−1 and 970 cm−1, as
hown in Fig. 4.1A(a). Fig. 4.1A(b) presents the Raman spectra of olanzapine form I at high frequencies. The characteristic
eaks from the experimental results are accurately predicted at 2750 cm−1, 2910 cm−1, and 3040 cm−1, as shown in

Fig. 4.1A(b).
Next, we will study the Raman spectra of olanzapine polymorphs III and IV. To date, the Raman spectra of olanzapine

polymorphs III and IV have not been experimentally observed. A similar method (Luo’s paper [276]) was used to calculate
the Raman spectra of olanzapine polymorphs III and IV. The calculated Raman spectra at different frequency regions can
be used as a further reference, which is shown in Fig. 4.1B. As shown in Fig. 4.1B(a), the Raman spectra of polymorphs III
and IV have eight and nine peaks, respectively, at low frequencies. In Fig. 4.1B(b), polymorphs III and IV have eight and
seven peaks, respectively, at medium frequencies. Notably, the Raman spectra of polymorphs III and IV present obvious
32
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Table 4.2
Calculated and observed crystal structural parameters of sulfathiazole forms I, II, III, IV and V. All calculations were
performed on DFT level of ωB97XD/6-31G*.
Form Method Temp. (K) a (Å) b (Å) c (Å) CCDC Ref code

Form I Experiment 10.554 13.220 17.050 SUTHAZ01
Form I DFT /B97XD/6-31G* [281] 300 10.355 13.185 16.842
Form II Experiment 8.235 8.550 15.558 SUTHAZ
Form II DFT /B97XD/6-31G* [281] 300 8.119 8.419 15.472
Form III Experiment 17.570 8.574 15.583 SUTHAZ02
Form III DFT /B97XD/6-31G* [281] 300 17.333 8.306 15.550
Form IV Experiment 10.867 8.543 11.456 SUTHAZ04
Form IV DFT /B97XD/6-31G* [281] 300 10.643 8.251 11.398
Form V Experimental 14.330 15.273 10.443 SUTHAZ06
Form V DFT /B97XD/6-31G* [281] 300 14.096 14.854 10.319

differences in the region of high frequencies shown in Fig. 4.1B, in which polymorph III presents five peaks and polymorph
IV has seven peaks. In Raman spectroscopy, differences in the number and position of peaks will be fundamental concepts
for identifying a particular form.

Sulfathiazole
In 1939, the organosulfur compound sulfathiazole (also known as N’-2-thiazolylsulphanilamide) was determined

nd has become a typical representative bacteriostatic drug and one of the most effective sulfonamides. Sulfathiazole
as shown polymorphism with five polymorphs. The crystal structure and stability of these polymorphs have been
esearched for quite some time. Recently, fragment-based QMmethods have been applied to the prediction of sulfathiazole
olymorphs [281], such as stability determination and property prediction. Sulfathiazole, a compound that forms five
nown crystal structures, has been examined to understand its different polymorphs and their stabilities. The main
ifferences between the polymorphs of sulfathiazole lie in the bonding of hydrogen and its effects on the arrangement
f the molecules in the crystal structure [282]. A comparison of the observed and calculated crystal structure parameters
f five different polymorphs of sulfathiazole is presented in Table 4.2, which shows a good consistency between the
ptimized crystal structure parameters and the experimentally observed results. The deviation in the average crystal
tructure parameters between the calculated and observed values is approximately 0.1 to 0.3 Å.
Hao et al. computed the Raman spectra of five forms of sulfathiazole by using the DFT level of ωB97XD/6-31G* [281].

dditionally, they compared their computational Raman spectra with the experimentally observed results performed
y Munroe et al. [283]. Hao et al. noted the computationally obtained Raman spectra and compared them with the
xperimental results given in Fig. 4.2. From 1100 cm−1 to 1500 cm−1 in Fig. 4.2, form I and form II both have six distinct
aman peaks, while form III, form IV and form V present five different Raman peaks. Fig. 4.2 presents the positions of
aman peaks for the calculation, which indicate a minor difference in the position when compared with the observed
osition. The calculated Raman frequencies are slightly larger than the observed spectra, which mainly results from the
armonic approximation in the implemented computational approach that ignores the nonharmonic effect. Generally, the
aman spectra from theoretical calculations match well with the experimentally observed results of Munroe et al. [283],
hich establishes the correctness of their calculation. Moreover, the computational Raman spectra given in Fig. 4.2 for

orm I and form III are also comparable with the experimental work done by Hu et al. [284].
To determine the stability of different polymorphs, Hao et al. calculated the Gibbs free energy and compared their

ifferences for the five sulfathiazole forms using the embedded fragmental approach at the DFT/B97XD/6-31G* level at a
tandard atmospheric pressure and 300 K [281]. They found that at 300 K, the calculated order of stability based on the
ibbs free energy is form I < form V < form IV < form II < form III [281]. Generally, a polymorph with the lowest Gibbs
ree energy is considered the most stable form, indicating a clear correlation between the structural stability and Gibbs
ree energy. In that case, form III is the most stable crystal of the sulfathiazole polymorphs at 300 K. Munroe et al. studied
he relative structural stabilities of the five sulfathiazole polymorphs using solid-state and solution-based methods [283].
ased on a combination of solubility measurements and isothermal suspension equilibration experiments, they identified
hat in the temperature range of 10–50 ◦C form I and form V are less stable than form II, form III and form IV, with
nly small differences in stability among the latter three forms [283]. Based on the various experimental results, they
roposed that in the lower temperature range of 10–50 ◦ C the stability order of sulfathiazole is form I < form V < form
V < form II < form III [283], where this experimentally observed stability order of sulfathiazole matches well with the
omputational results given above proposed by Hao et al. Moreover, their stability computational results also match well
ith the experimental results [282,283,285–287].

i-p-tolyl disulfide
With the rapid growth of energy demand and the depletion of existing energy resources, new materials with superior

erformances, low costs and environmental friendliness for energy production and storage are being explored. Di-p-
olyl disulfide is a typical lubricating material that has been used in the field of energy storage. The crystal structures,
onformational properties and phase transformations of di-p-tolyl disulfide have been investigated for years with
ragment-based DFT and MP2 methods. In this section we will review the QM studies on di-p-tolyl disulfide for crystal
33
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Fig. 4.2. Crystal structures and calculated and observed Raman spectra of sulfathiazole (a) (b) form V, (c) (d) form IV, (e) (f) form III, (g) (h) form
I and (i) (j) form I, where red curves represent calculated Raman spectra and black color represent observed Raman spectra.
ource: These figures were taken from Hao’s research paper [281]. The observed Raman spectra were from Munroe et al.’s work [283].

tructure screening, prediction and optimization, stable structure determination and property (such as Raman and IR
pectra) predictions [288].
Hao et al. [288] used the different crystal structure prediction tools of MOLPAK [289,290] (MOLecular PAcKing) and

SPEX [291–293] to investigate crystal structure screening, prediction and optimization of di-p-tolyl disulfide. In total,
000+ possible hypothetical crystal structures [288] were produced via USPEX and MOLPAK. They selected 38 structures
18 from USPEX prediction and 20 from MOLPAK prediction) with the lowest lattice energies for further optimization,
here crystal structure optimization was performed with the DFT/ωB97XD/6-31G* theory, and the single-point energy
as obtained from MP2 calculations based on the stable crystal structures after optimization. In their study, MP2 theory
as adopted to perform the calculations [288] more accurately. They then employed Gibbs free energy, which is more
ccurate than traditional lattice energy calculations [288]. Gibbs free energy includes the contribution of entropy and
emperature in the energy calculations. By comparing the Gibbs free energies between the predicted and experimental
tructures, they found that phase α is the most stable structure for di-p-tolyl disulfide crystals at an ambient temperature
34
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Fig. 4.3. Crystal structures and vibrational spectroscopy of di-p-tolyl disulfide. (a) and (b) represent the crystal structure of phase α and β , (c) and
d) represent the Raman and IR spectra, respectively. The curve with green and red color represents phase α and phase β , respectively.
ource: Reproduced from Hao et al.’ work. [288].

nd standard atmospheric pressure. The crystal structures of di-p-tolyl disulfide phases α and β are shown in Fig. 4.3(a)
b), respectively.

Generally, vibrational spectroscopy [294,295] can be used to identify the crystal structure of a certain molecule. To
etermine the differences between di-p-tolyl disulfide phases α and β , Hao et al. [288] presented the IR and Raman spectra
rom the theoretical calculations of di-p-tolyl disulfide crystals. The IR and Raman spectra are presented in Fig. 4.3(c) and
d), respectively. In Fig. 4.3(c), the Raman spectra are presented in the frequency region of 700 to 1200 cm−1, which shows
hat seven and eight remarkable Raman peaks can be identified from the spectra of phase α (colored in green) and phase
(colored in red), respectively. For di-p-tolyl disulfide phase β (colored in red), the Raman peak 3* (∼874 cm−1) is the
omain characteristic peak. In addition, in Fig. 4.3(d), five and four IR peaks for phase α (colored in green) and phase β

colored in red) can be identified, respectively. IR peak 2*, with a frequency of ∼3220 cm−1, is a domain characteristic
eak for phase α (colored in green). In summary, the di-p-tolyl disulfide phases α and β can be distinguished by Raman
pectra with peak 3* and IR spectra with peak 2*.
-lactams
As a class of antibiotics, β-lactams contain all antibiotic agents with β-lactam rings in their molecular structures.

hey have the advantages of a strong bactericidal activity, a good clinical efficacy, a low toxicity, and wide indications.
sostructural β-lactams (trans-13-azabicyclo[10.2.0]tetradecan-14-one) were demonstrated to have three polymorphs that
ave been widely used as components of common antibiotics, such as cephalosporin and penicillin. Luo et al. [296]
alculated the crystal structure parameters and predicted the Raman spectra of β-lactam forms I and II using QM theories
DFT and MP2) combined with the proposed embedded fragmental QM method [296]. They investigated the crystal
tructures and calculated the Gibbs free energies of two β-lactam polymorphs. The two polymorphs of β-lactam were
35
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Table 4.3
Calculated and experimentally observed crystal structure parameters (Å) of polymorphs I and II
at atmospheric pressure. The calculation is performed based on the crystal structure optimization
[296] with DFT/B97XD/6-31G* theory.
Parameters Expt. Form I [298] DFT Form I Expt. Form II [298] DFT Form II

a/Å 5.858 5.645 5.962 5.781
b/Å 7.629 7.451 7.267 7.327
c/Å 28.237 28.519 28.689 28.402

identified with the Raman spectra and a comparison of Gibbs free energy, which further shows a temperature-induced
phase transition at approximately 308 K.

Sultan et al. investigated two derivatives of β-lactam antibiotics (i.e., amoxicillin and ampicillin), which exhibit a
imilar antibacterial spectrum [297]. They used quantum mechanical methods for this study. These compounds were
onfirmed by an XRD analysis, and optimized bond parameters were calculated using DFT at the B3LYP/6-31G(d) level. The
ptimized geometrical parameters were in good agreement with the crystal data [297]. Luo et al. [296] also used quantum
echanical methods to optimize the crystal structure of β-lactam. Table 4.3 shows a comparison of the crystal structure
arameters of polymorphs I and II from theoretical calculations and experimental observations. The optimized crystal
tructure parameters are consistent with the experimental observations. Specifically, for both β-lactam polymorphs I and
I, the deviations between lattice constants a and b from the calculations and experiments are 0.2 Å, which are 0.282 Å
nd 0.287 Å = for polymorphs I and II, respectively.
Sultan et al. [297] optimized the molecular geometries of β-lactam in the gas phase using the QM method at

he B3LYP/6-31G (d) level. The IR spectrum was obtained from optimized structures, and the frequencies obtained as
armonics were converted to anharmonic frequencies with a scale factor of 0.9600. The vibrational spectra obtained
rom the optimized structures calculated at the B3LYP/6-31G(d) level in the gas phase of amoxicillin and ampicillin were
ompared [297]. Fig. 4.4 shows the calculated IR (Fig. 4.4(a)) and Raman spectra (Fig. 4.4(b)–(d)) of β-lactam polymorphs I
nd II in the low frequency (b) and high frequency (d) regions, respectively, which were done by Luo et al. [296]. In Fig. 4.4,
he spectra of polymorphs I and II are colored red and green, respectively. The QM method (DFT/B97XD/6-31G*) was used
or structure optimization and energy calculation [296]. In Fig. 4.4(d), the Raman spectra of the two polymorphs present
he same number of spectral peaks in the region of high frequency. Meanwhile, the first Raman peak of both polymorphs
s located at 3090 cm−1, and the second Raman peak of form II shows a slight shift compared to that of form I. For the
egion of low frequency, however, the number of peaks is very different for the two polymorphs (Fig. 4.4(b)), in which
olymorph I shows five peaks while polymorph II shows seven peaks. In Fig. 4.4(b), the two extra peaks are labeled
ith black star signs and are capable of distinguishing the crystal structure of β-lactam polymorph II. In conclusion,

the significant discrepancy in the Raman spectra, including the number and frequency of the peaks, between the two
structures is capable of indicating the existence of two different β-lactam polymorphs. The Raman and IR spectra can
present the features of crystal structures very well [296].

4.2. Low temperature phase transition prediction

Olanzapine
Polymorphic molecules may transfer from the parent phase to the secondary phase and vice versa by changing their

temperature. Different polymorphic forms of the same compound may possess different chemical and physical properties,
including stability, flexibility and compressibility, thus affecting the safety and overall performance. Therefore, it is very
important for chemists, physicists, and scientists to know the effect of temperature on polymorphic molecules. Here we
study the phase transition of olanzapine polymorphs induced by temperature [276,277,296]. Fig. 4.5(a)–(c) shows the
Gibbs free energy difference per unit cell between different olanzapine polymorphs. The Gibbs free energies in Fig. 4.5(b)
and (c) were calculated by computing the single point energy of enthalpy. Then, MP2 theory was performed with the
6-31G* basis set based on the DFT ωB97XD/6-31G* of optimized crystal structures, and the zero points of energies and
entropies were obtained using ωB97XD/6-31G*. Fig. 4.5(c) shows that the Gibbs free energy of polymorph I is lower
than that of polymorph II over the entire temperature range; hence, the crystal structure of olanzapine polymorph I is
more stable than that of polymorph II [276]. As shown in Fig. 4.5(c), the difference between the Gibbs free energy of the
two polymorphs increases with an increasing temperature, demonstrating that polymorph II becomes less stable as the
temperature [276] increases. In Fig. 4.5, the difference between the Gibbs free energies of polymorphs I and II increases
from 0.68 kcal/mol to 1.14 kcal/mol by varying the temperature from 5 K to 350 K, respectively [276]. As Fig. 4.5(b) and (c)
use the MP2/6-31G* level for Gibbs free energy computation, they have minor differences in the Gibbs free energies, but
the variation in the Gibbs free energy difference is similar. Fig. 4.5(a) was computed by only using density functional theory
(DFT). DFT provides a reasonable accuracy with acceptable computational costs, whereas MP2 provides a higher accuracy
with high computational costs. Therefore, the Gibbs free energy difference computation in Fig. 4.5(b) is more accurate
than in (a). Furthermore, it also confirms that olanzapine form I is the most stable form, as believed. More interestingly,
Fig. 4.5(b) and (c) demonstrate the phase transition in forms III and IV. Fig. 4.5(b) and (c) show the difference in the Gibbs
36
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Fig. 4.4. The comparison of (a) IR and (b)–(d) Raman spectra of β-lactam polymorphs I (colored in red) and II (colored in green) at atmospheric
pressure in the region of (b) low frequency and (d) high-frequency, respectively. The characteristic Raman peaks of polymorph II are labeled as black
stars.
Source: Reproduced by the work of Luo et al. [296].

free energy between the four olanzapine forms in the temperature range of 0 to 450 K using ωB97XD/6-31G* (b) and
MP2/6-31G* (c), respectively. The Gibbs free energy curves of olanzapine polymorphs I, II, III, and IV are colored black,
red, blue, and green, respectively. In the temperature range of 0 to 450 K, polymorph I remains the most stable structure,
while polymorph II exhibits the most unstable structure. Notably, the energy lines of olanzapine polymorphs III and IV
show an intersection at 200 K. More specifically, the intersection temperature is 195 K from the DFT calculations and
189 K from the MP2 calculations, as shown in Fig. 4.5(a) and (b) [277], respectively. Therefore, based on the intersection
of the Gibbs free energy between polymorphs II and IV, we can demonstrate that a temperature-induced polymorphic
transformation occurs at 200 K, which means that polymorph IV remains stable at low temperature conditions (less than
200 K) and can probably transform to polymorph III as the temperature increases above 200 K.

β-lactam
Fig. 4.5(d) presents the difference in the DFT-calculated Gibbs free energy between form I and form II [296]. The

enthalpy was calculated using the MP2/6-31G* theory based on the crystal structure optimized by B97XD/6-31G*, while
the zero-point energy (ZPE) and entropy contribution were calculated using the B97XD/6-31G* theory [296]. Fig. 4.5(d)
shows that the Gibbs free energy of polymorph I is obviously larger than that of polymorph II at low-temperature
conditions (less than 308 K) and decreases as the temperature increases above 308 K. Therefore, the phase transition
temperature of β-lactam polymorphs I and II is 308 K, above which polymorph II can transform into polymorph I [296].
Previously, neither experimental nor theoretical work presented this polymorphic transformation of β-lactam, and thus
a transformation prediction is expected to be instructive for future experimental investigations [296].
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Fig. 4.5. Differences of calculated Gibbs free energies among polymorphs for olanzapine and β-lactam at standard atmospheric pressure, presenting
he phase transformation between polymorphs. (a) and (b) show differences of Gibbs free energy between four forms of olanzapine calculated by
FT and MP2, respectively [277] ( c⃝ 2021 Elsevier). (c) shows Gibbs free energy difference between forms II and I of olanzapine calculated by
P2 [276] ( c⃝ 2019 American Physical Society). (d) shows differenced of Gibbs free energy between form II and I for β-lactam calculated by MP2,
here the phase transformation occurs at about 308 K [296].

.3. ML predictions for chemical shift and force fields

In computational physics and chemistry, the large number of possible molecules and materials and the numerous
ethods for chemical transformations make QM approaches required for fundamental understanding of physics and
hemistry. For a fixed molecule or molecular geometry, QM methods are capable of accurately calculating microscopic
roperties, such as energy, atomic forces, polarizability, and electrostatic multiples. As we discussed in Section 2, many ML
odels have been proposed for the property calculation of small molecules with a better efficiency. For organic molecules,
specially drug molecules and relevant crystals, various ML methods have been used for predicting properties, such as
MR chemical shifts [299,300], refractive indices [301], and other molecular properties [302].
For example, in 2020 Scalia et al. [302] quantitatively evaluated the performance of three state-of-the-art methods for

he uncertainty estimation of graph convolutional neural networks (GCNNs) [303] for predicting molecular properties, in-
luding deep ensembles [304], bootstrapping and Monte Carlo dropout (MC-dropout) [305] with a concrete dropout [306].
ig. 4.6 presents the illustration for predicting molecular properties with a GCNN.

hemical shifts
Among these properties, NMR chemical shifts, strongly dependent on local atomic environments, have become one of

he most powerful tools for structure elucidation of powdered solids or amorphous materials. Despite the great accuracy
f chemical shift calculations, QM methods encounter great difficulties in widespread applications due to the extremely
arge computational cost. In that case, ML method has become a choice for predicting the chemical shift of solids at the QM
evel [307]. For a long time, SPARTA+ [308], proposed by the single-layer feed-forward network, has been one of the most
opular methods for chemical shift prediction. Based on sequence homology, SHIFTX2 [309] has become a more powerful
ool with a better predictive value. In particular, the gauge-including projector-augmented waves (GIPAW) [310] method
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Fig. 4.6. Illustration of molecular property prediction with a GCNN method.
Source: Reproduced with permission from the work of Scalia et al. [302].
© 2020 American Physical Society.

is widely used to identify NMR chemical shifts for solid-state crystals with DFT calculations. To avoid computationally
intensive DFT calculations, Paluzzo et al. [311] (2018) proposed an ML model (shiftML) for a chemical shift prediction
based on 3D structures and rotational symmetry using KRR and the SOAP kernel [312], which exhibits a good performance
for molecular crystal systems. Fig. 4.7 shows the chemical shift calculation times (DFT and shiftML) and NMR chemical
shift predictions (shiftML) of six large molecular crystals (CSD reference codes: CAJVUH, RUKTOI, EMEMUE, GOKXOV,
HEJBUW and RAYFEF) with more than 700 atoms per unit cell. As shown in Fig. 4.7(a), the CPU times of shiftML predictions
(turquoise) are dramatically decreased than DFT calculations (blue and orange).

Despite the considerable acceleration effect of shiftML for chemical shift prediction, training data generation using DFT
is still the bottleneck, which makes shallow ANN essential, and the complexity of computing and inverting the kernel
matrix makes it impractical for KRR to handle large datasets. In 2019, Liu et al. [300,307] developed a deep learning
model for chemical shift prediction for molecular crystals without DFT calculations. They proposed the multiresolution
3D-DensseNet architecture (MR-3D-DenseNet) by using multiple channels to describe different spatial resolutions for each
atom type with cropping, pooling, and concatenation. This model presents good results for 13C, 15N, and 17O chemical shifts
compared with the QM methods. Fig. 4.8 shows the overview of the MR-3D-DenseNet architecture and the testing RMSEs
for 1H, 13C, 15N, and 17O from KRR, 3D-DenseNet without data augmentation and 3D-DenseNet with data augmentation.

In addition, another DFT-based ML model was proposed by Gao et al. [319] (2020), which presented a significant
accuracy increase for 13C and 1H NMR chemical shift prediction for a variety of organic molecules. In the same year,
Gerrard et al. [320] proposed an intelligent machine prediction of shift and scalar information of a nuclei (IMPRESSION)
system for efficiently predicting the NMR parameters of 3D molecular structures at the QM level of accuracy.

Force fields
Classical force fields and molecular dynamic simulations constitute the cornerstone of contemporary atomistic model-

ing in physics, materials, chemistry and biology. However, based on the interatomic potential, classical force fields have
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Fig. 4.7. Chemical shift calculation times and large structures. (a) DFT (GIPAW) calculation time (blue and orange) and ShiftML prediction time
(turquoise) for different system sizes. (b)–(g) 3D-schemes and 1H NMR spectra predicted with ShiftML, of the six large molecular crystals with CSD
refcodes: (b) CAJVUH [313], Natoms = 828, (c) RUKTOI [314], Natoms = 768, (d) EMEMUE [315], Natoms = 860, (e) GOKXOV [316], Natoms = 945, (f)
HEJBUW [317], Natoms = 816, and (g) RAYFEF [318], Natoms = 1584.
Source: Reproduced from the work of Paluzzo et al. [311].

a series of limitations and cannot present key quantum effects in molecules. In recent years, ML methods have been used
to construct molecular force fields based on high-level QM calculations for a series of small molecules, as discussed in
Section 3.4. In addition, for several drug molecules the global ML-based force field constructed by these ML models has
shown a great potential for applications in molecular dynamic simulations with fully quantized electrons and nuclei.
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Fig. 4.8. Illustration and the performance of MR-3D-DenseNet architecture. (A) presents the (a) overall workflow of the network, (b) illustration
of 3 × 3 × 3 convolution layer prior to the first dense block, (c) illustration of the repeating unit in DenseNet block containing two 1 × 1 × 1
convolution layers followed by a 3 × 3 × 3 convolution layer, and (d) illustration of the cropping layer from the center of the feature map. (B)
presents the testing RMSEs for 1H, 13C, 15N, and 17O from KRR, 3D-DenseNet without data augmentation and 3D-DenseNet with data augmentation.
( c⃝ 2019 American Physical Society) and (B) is taken from Haghighatlari et al. [307] ( c⃝ 2020 Elsevier).
Source: (A) is taken from the papers of Liu et al. [300].

In 2018, Chmiela et al. [167] proposed an sGDML [235] model for constructing flexible and global molecular force fields
based on spatial and temporal physical symmetries. Since the data for model training were obtained from high-level ab
initio calculations, this ML model is capable of constructing force fields with a CCSD(T) level of accuracy. During model
41
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Fig. 4.9. MD simulations using sGDML model for (a) ethanol, (b) malonaldehyde and (c) aspirin. (a) The joint probability distribution function for
he two dihedral angles, and the vibrational spectra (velocity–velocity autocorrelation function) using PIMD simulations with sGDML-CCSD(T) and
GDML-DFT at 300 K. (b) The joint probability distributions of the dihedral angles in malonaldehyde of both aldehyde groups using classical MD
imulations with sGDML-CCSD(T) and sGDML-DFT. (c) The joint probability distributions for the dihedral angles in aspirin of the ester and carboxylic
cid groups using PIMD simulations with sGDML-CCSD and sGDML-DFT at 300K.
ource: Reproduced from the work of Chmiela et al. [167].

onstruction, the computational complexity is significantly reduced by a data-based investigation of related physical
ymmetries in space and time and increasing the information content of data entries by implementing the indicated static
nd dynamic symmetries, and thus implicitly increasing the data volume. The constructed force fields can be applied
o molecular dynamics simulations at the CCSD(T) level with fully quantized molecular electrons and nuclei. Fig. 4.9
hows the performance of these force fields in molecular dynamics simulations for ethanol (Fig. 4.9(a)), malonaldehyde
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Fig. 4.9(b)) and aspirin (Fig. 4.9(c)). The ML simulations for ethanol, malonaldehyde and aspirin demonstrate the necessity
f adopting a force field with high accuracy to obtaining quantitative and reliable understanding of molecular systems.
he accuracy of the proposed forced fields satisfies the stringent demands of spectroscopic accuracy for molecular
imulations in the range of wavenumbers (∼0.03 kcal/mol), compared with 0.1–0.2 kcal/mol of the energy difference
etween molecular conformers. The ML force fields have been demonstrated to be powerful for predictions with a high
ccuracy for a series of atomistic and molecular systems [321–323], which usually have common features and relatively
lat free energy surfaces.

The accuracy of such a force field strongly depends on the quality and characteristics of the data, such as atomic
onfigurations and relevant energies. Another example is that Plazinski et al. [324] (2020) proposed a new approach
or constructing ML force fields based on MM/MD simulations and QM calculations for selected structures. The biased
ubsampling of the configurations, which can increase the population of hardly accessible states, is used to address the
hallenge of a decreasing accuracy that results from the Boltzmann distribution and the absence of high-energy states. The
pplications of the proposed force fields on two flexible, heterocyclic molecules (2-fluorotetrahydrofuran (THP-F) and 2-
luorotetrahydropyran (THF-F)) exhibit a great performance. These ML force fields exhibit a high potential for applications
n MD simulations at the QM level of accuracy as ML model progress.

As discussed above, significant progress has been made in constructing force fields and predicting chemical shifts
nd other properties of organic molecules and molecular crystals using various ML methods. However, there are many
hallenges for property predictions using ML methods with the accuracy of high-level QM methods. For example, much
ore large and high-quality datasets are required for chemical space exploration and property prediction, such as the
aterials Project [325], MD17 [235], QM7 [156,326], QM9 [327] and OQMD [328]. On the other hand, new powerful
L methods rely on only a small amount of data and are essential for computational savings and wide applications.
roposing reliable models based on small datasets is challenging, which makes it essential for achieving data efficiency
ith a considerable accuracy and robustness for ML methods by including prior physical knowledge and invariance

nformation. Another issue is the selection bias existing in a series of training datasets in this field, which can influence
he robustness and rigorousness of the statistical learning process, such as k-fold cross-validation and convergent learning
urves. Stability or attribute distributions are often unknown, thus hindering a rigorous assessment of the extent to which
particular dataset is fully representative of the broad chemical space. Predictably, progress in ML methods, high-quality
ata acquisition and data representation will advance the increase in the accuracy and efficiency for chemical shifts and
ther property predictions.

.4. ML accelerates crystal structure prediction (CSP)

In the previous sections, we introduced the applications of ML methods for predicting the properties of molecules
nd crystals. For molecular crystals, the properties depend on the molecular constituents and the relative arrangement
f molecules in the crystal unit cell. Weak intermolecular interactions [329,330] usually result in polymorphisms in
olecular crystals, presenting multiple forms [331,332] at different pressure and temperature conditions. However,
irect crystal structure determination via power X-ray diffraction patterns is resource and time consuming and is not
lways possible. In addition, the predicted structures can provide useful information for determining the structure from
ncomplete experimental data, such as electron diffraction [333], solid-state NMR [334] and power X-ray diffraction [335].
n that case, CSP has been of great importance and draws much attention in pharmaceutical research and the design of
igh-performance organic electronics [336–338]. The CSP only relies on basic connectivity information of a molecule
chemical diagram), and the different polymorphs often differ by only a few kJ/mol, leading to a significant challenge
or computational physics and chemistry [339,340]. As the starting point and critical component of CSP, random
rystal structure generation requires efficient methods to generate new structures for sampling the high-dimensional
onfiguration space related to molecular crystals, which has become part of the Cambridge Crystallographic Data Centre
CCDC) CSP blind test [341–346]. Much effort has been made to propose such an algorithm to randomly generate crystal
tructures. For example, several methods have been proposed, such as relaxing a few handmade structures [347], using
he morphology of the molecule [348] and adding up atomic volumes [349]. A random structure generator for molecular
rystals (Genarris 2.0) was developed by Tom et al. [350] in 2020, which is a new version of Genarris [351] with many
mprovements. Apart from random structure generation, algorithms for structure optimization have also become essential
omponents of CSP blind tests [341], such as evolutionary algorithms [352,353], random search [349,354], quasi-random
earch (Sobol sequence) [355,356], MC parallel tempering [357] and simulated annealing [358].
In recent years, progress in ML methods has significantly promoted the improvement in CSP for overcoming the

imitations in accuracy for force fields and in extreme computational cost for full QM methods. In 2018, Yamashita
t al. [57] developed a selection-type CSP model based on a random search and Bayesian optimization [359–361],
hich is distinguished from evolutionary algorithms [292,362,363] and particle swarm optimization [364,365]. With
he ML algorithm, the proposed approach demonstrated a high efficiency for selecting the most stable structure from
large number of random structures when applied to known systems, such as Y2Co17 and NaCl. The number of

earching trials for finding the global minimum structure was reduced by 30%–40%. Based on the evolutionary algorithm
USPES) [292,362,363], Podryabinkin et al. [58] (2019) introduced an approach for automated construction of interatomic
nteraction models from scratch using ML interatomic potentials and the active learning on-the-fly algorithm [366].
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Fig. 4.10. Lattice energy depending on density for predicted crystal structures of A. oxalic acid and B. maleic hydrazide, using (a) the FIT+DMA
orce field, with (b) the GP ML model using 10% training data, (c) GP ML model using 20% training data, and (d) MP2 (target) landscape.
ource: The pictures were taken from the paper of McDonagh et al. [59].

he proposed model then successfully reproduced all the main allotropes for the testing system, such as carbon, the
igh-pressure phase of sodium, and boron allotropes. In the same year, McDonagh et al. [59] proposed an approach for
mproving the force field lattice energy calculations during CSP via two-body corrections with a high-level DFT/MP2 and
aussian process (GP) ML model. For accuracy evaluation, Fig. 4.10 shows the lattice energy depending on the density for
redicted crystal structures of oxalic acid (Fig. 4.10A) and maleic hydrazide (Fig. 4.10B) using the FIT+DMA force field
ith different corrections, namely, GP ML with 10% data, GP ML with 20% data and MP2, indicating that the GP ML model
ith only a 20% training data can produce a faithful reproduction of the MP2 correction.
Recently, Egorova et al. [60] (2020) introduced a multifidelity statistical ML (GP model) to predict expensive hybrid

FT functional (PBE0) calculations in CSP for molecular crystals, which presented a good performance for reproducing
he crystal structure landscapes for oxalic acid, urazole, and maleic hydrazide. In 2021, based on data mining and ML,
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Fig. 4.11. The (a) workflow of FFCASP and (b) the improved SA algorithm equipped in FFCASP.
Source: The pictures were taken from the paper of Demir and Tekin [367].
© 2021 American Physical Society.

Demir and Tekin [367] developed the fast and flexible crystal structure predictor (FFCASP) algorithm to predict the
structure of molecular crystals, which is an enhanced version of the DFT-based algorithm (CASPESA) [368]. The parallel
acceleration provides the ability for global optimization with 1000 separate parameters and the prediction of structures
with more than 200 atoms in a unit cell. Fig. 4.11(a) presents the workflow of the FFCASP algorithm, in which global
optimization is performed using an improved simulated annealing (SA) [369] algorithm with several new features, such
as periodic parameters, task forming parallelism and a new temperature reduction method, as shown in Fig. 4.11(b). This
algorithm has been applied to the CSP of pyrazinamide, cytosine, and coumarin by generating more than 20000 structures
and selecting unique structures for further optimization, which successfully reproduced the reported crystal structures,
indicating a further possibility to investigate the polymorphic nature for molecular crystals of interest and important, such
as various drugs. Fig. 4.12 shows the results of predicting the cytosine structure with FFCASP, including the comparison of
structures from FFCASP and DFT optimizations, the matminer [370] calculated dendrogram diagram based on the structure
distance matrix, and the phonon band structures of the predicted crystal structures.

As we discussed above, many ML methods along with various CSP algorithms, QM methods, and fragment-based
methods have been widely used for developing new approaches for efficiently and accurately predicting crystal structures.
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Fig. 4.12. The results of predicting cytosine structure with FFCASP, including (a) the comparison of structures from FFCASP and DFT optimizations,
(b) the matminer calculated dendrogram diagram based on the structure distance matrix, and (c) the phonon band structures of three predicted
crystal structures, including monoclinic structure (P21/c, Z = 4), tetragonal structure (I4d, Z = 16), and orthorhombic structure (Fdd2, Z = 16).
ource: The pictures were taken from the paper of Demir and Tekin [367].

t is foreseeable that with the rapid development of ML methods, structural representation methods, stochastic algorithms
nd global optimization algorithms, the accuracy, reliability and efficiency of CSP will be greatly improved.

. ML-driven software for accelerating the QM calculation

In the above sections, we introduced several QMmethods, fragment-based QMmethods and ML models for accelerating
M calculations in computational QM calculations, especially for molecules and molecular crystals. ML methods have
een widely used for PES constructions of molecules and molecular crystals, resulting in a series of algorithms, models
nd packages, such as Amp [371], sGDML [167,235], AP-Net [190], DeePMD [187], and PES-Learn [372], as discussed in
46
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able 5.1
oftware and packages for computational chemistry/physics with ML methods, including the program name, author and year of first report, program
ype, methods used in the program, and the main function.
Name Author Type Method Function

Ochem_predic_nn Coley et al. [79] (2017) Python program ML Predicting organic reaction outcomes
Mol2vec Jaeger et al. [373] (2018) Python package Unsupervised ML Learning vector representations of

molecular substructures
XtalOpt(r12) Avery et al. [374,375] (2018) Software ML Predicting crystal structure, and

hardness
PES-Learn Abbott et al. [372] (2019) Python package GP and FFNN Constructing PESs
MLatom Dral [376] (2019) Program KRR Atomistic simulations
ChemML Haghighatlari et al. [377]

(2020)
Program and platform AL, TL, auto ML Analysis, mining, and modeling of

chemical and materials data
UADDCR Zhang et al. [378] (2020) Software One-hot, NN and

K-means
Predicting chemical reaction

QSAR-Co-X Halder and Cordeiro [379]
(2021)

Toolkit kNN, NB, SVC, RF, GB,
MLPNN

modeling mt-QSAR

NN-FQM Han et al. [183] (2021) Software NN Optimizing structure, and predicting
properties and phase transition

Sections 2.3, 3.4 and 4.3. For wide applications, several ML models or algorithms have been compiled into visualization
software or packages to provide quick and easy access for researchers, such as Mol2vec, MLatom, UADDCR, QSAR-Co-
X and NNFQM. Table 5.1 presents a list of notable programs developed using ML methods for molecules and crystals.
Based on the different ML models and data representations, these programs were designed for a series of applications,
including molecule representation, PES construction, QSAR modeling, atomic simulation, and the prediction of structure,
property, chemical reaction, and phase transition. Generally, the use of these visualization programs does not require
extensive experience with ML, programming, or scripting, which benefits researchers focusing their attention on chemical
studies with ML. In addition, open-source python packages are usually more flexible and extensible for a wide range of
applications, allowing users to design the programs on their own investigations, and even modify the packages using
different ML models.

Molecule representation
The appropriate descriptions of molecules are of great importance for ML methods being applied to computational

hysics and chemistry. In 2018, Jaeger et al. [373] introduced an unsupervised ML model (Mol2vec) for learning vector
epresentations of molecular substructures. Mol2vec can encode compounds as information-rich vectors by summing the
ectors of the individual substructures, which are obtained from the unsupervised ML model for a corpus of compounds
ontaining all of the available chemical matter. The encoded vector representations can then be fed into the ML models
or further ML training and property prediction. The evaluation of Mol2vec on common substructures and amino acids
emonstrates that derived substructure vectors of chemically related substructures and compounds occupy similar vector
pace, and thus a new compound can be described by summing these substructure vectors obtained from a previous
ol2vec model. An illustration of Mol2vec is shown in Fig. 5.1, in which a Mol2vec model is generated by embedding-
nsupervised pretraining, and the generated vectors are fed into supervised ML for applications. ML models for chemical
epresentation, such as Mol2vec, provide a basis for a wide range of ML applications for predicting chemical properties.

roperty prediction
With molecular representation, ML methods can be easily used to predict a wide range of properties, such as the

nergy, atomic force, chemical shift, hardness, and phase transition of crystals, which have been introduced in the previous
ections. In addition to the models for a particular system, several software programs have been proposed for a wide
ange of systems and properties. In 2018, Avery et al. introduced Xtalopt [374] version r12, an open-source evolutionary
oftware for crystal structure prediction, in which an automatic flow for materials discovery-ML (AFLOW-ML) [375] model
s incorporated for hardness calculations and the prediction of hard structures. In 2020, Han et al. [183] proposed a newly
fficient approach for the predictions of Gibbs free energy, structural characteristics and thus phase transition of solid
rystal structures. Based on a combination of QM calculations, fragment-based methods, and NNs, this approach is capable
f accelerating high-level ab initio calculations with the MP2 level of accuracy and presents a good performance in the
valuation of ice crystals. Based on this approach, they also proposed NN-based fragmental QM (NN-FQM) software for
olecular crystal calculations with a GUI interface for usability. In the NN-FQM procedure, the PES models for low-order
any-body terms can be obtained via model training in this software or by incorporating external PESs. With these PESs,

he NN-FQM software is capable of predicting the Gibbs free energy and atomic forces, optimizing the structure of a
olecular crystal under a series of pressure–temperature conditions and predicting the phase transition between two
rystal phases. Quantitative structure–activity relationship (QSAR) construction has become one of the most essential
nd effective tools for a wide range of applications, such as chemical data mining and analysis, predicting properties
nd investigating potential information via virtual screening from libraries [380,381]. Previously, conventional QSAR
odels were constructed using a small number of experimentally observed or theoretically calculated data points, which
ignificantly limited the model accuracy. In recent years, a series of ML models was proposed for QSAR modeling [382,383].
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Fig. 5.1. Illustration of (a) generation and (b) application of Mol2vec.
Source: Reproduced from Jaeger et al.’s work [373].
© 2018 American Physical Society.

n 2019, Ambure et al. [384] introduced open-source visualization software (QSAR-Co) for constructing classification-based
SAR models and allowed mining of the response data from multiple conditions by adopting a genetic algorithm [385,386]
GA) based on a Linear Discriminant Analysis (GA-LDA) [387] or the RF [388] classifier. Fig. 5.2(a) (b) shows the workflow
f the QSAR-Co software, which contains two modules: the model development module (module 1) and the screen/predict
odule (module 2). The QSAR-Co software has been demonstrated to be extremely user-friendly and efficient, which only

equires setting up parameters and techniques and simply clicking a button.
Very recently, Halder and Cordeiro [379] (2021) moved a step forward from QSAR-Co software and developed an open-

ource toolkit (QSAR-Co-X) for multitarget QSAR (mt-QSAR) modeling based on the Box–Jenkins moving average approach.
y integrating diverse chemical and biological data from various conditions into a certain model and simultaneously
redicting the targeted response variables [389–391], mt-QSAR modeling is capable of extending and improving the
eliability of QSAR modeling. The QSAR-Co-X software contains four modules, including the linear modeling (LM) module,
he non-linear modeling with grid (NLG) search module, the non-linear modeling with user specific parameters (NLU)
odule, and the condition-wise prediction (CWP) module, in which various descriptors, feature selection algorithms, ML
ethods, validation strategies and analysis techniques are incorporated. Fig. 5.2(c) presents an illustration of the workflow
f the QSAR-Co-X toolkit, in which different modules are highlighted with different colors (blue, orange, black, and green
or module 1, module 2, module 3, and module 4, respectively, and red for modules 1–3). This toolkit has presented a
igh efficiency for handling large datasets from a series of experimental and theoretical conditions [392–398], presenting
ts potential to become a widely used toolkit for easily constructing mt-QSAR models.

utomatic model construction
As we discussed in the previous sections (Sections 2.3, 3.4 and 4.3), PES construction is an essential application for ML

ethods in computational physics and chemistry, and several ML models for constructing PESs have been introduced.
owever, constructing PESs using complex ML methods could become a challenge and a problem since extensive
rogramming experience and ML knowledge are usually required for model implementation. In addition, most PESs are
48
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c
M

Fig. 5.2. Illustration of overall functionalities of QSAR-Co and software QSAR-Co-X toolkit. The QSAR-Co contains two modules, including (a) model
development (Module 1) and (b) prediction/screening of query chemicals/database (Module 2). The QSAR-Co-X toolkit (c) contains four modules, in
which different modules are highlighted with different colors (blue for module 1, orange for module 2, black for module 3, green for module 4, and
orange for modules (1–3).
Source: These figures were reproduced from the reports of Ambure et al. [384] and Halder et al. [379].

onstructed for different cases, which makes them less transferable and verifiable. In that case, automatically constructing
L models and PESs is of great importance, and several software and platforms have been developed. Fig. 5.3 shows the
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Fig. 5.3. Workflow of three ML software packages. (a) PES-Learn including three automatic steps: generation of molecular configurations, data
reprocessing, transforming and partitioning, and ML model construction, (b) MLatom, in which tasks in blue are run by MLatomF command and
asks in orange are run by MLatom.py script, and (c) ChemML software package, containing ChemML library and ChemML Wrapper. ( c⃝ 2019
merican Physical Society), Dral [376] ( c⃝ 2019 John Wiley and Sons), and Haghighatlari et al. [377], respectively.

Source: The figures were reproduced from the reports of Abbott et al. [372].

workflow schematic for three software packages (PES-Learn, MLatom, and ChemML). In 2019, Abbott et al. [372] developed
an open-source and free software package (PES-Learn) for the automatic development of high-quality ML models of
system-specific Born–Oppenheimer molecular PESs. As shown in Fig. 5.3(a), the PES-Learn package automates many
steps that are required for ML PES construction, including the generation of molecular configurations and corresponding
electronic energies, data transformations and partitioning, as well as ML model training.

In addition, PES-Learn provides two ML algorithms for PES training: GP [241,399] and FFNN [155,400], which can
also use externally supplied PES data. In practice, PES-Learn presents a good performance for fitting several semi-global
PESs and conducting high-level vibrational configuration interaction computations for H2O and H2CO, with the CCSD(T)
evel of accuracy. In the same year, Dral [376] proposed a ML-based program package (MLatom) for computationally
fficient simulations of atomistic systems, which can be used out-of-the-box as a standalone program without extensive
xperience of ML, and programming. The workflow of MLatom is shown in Fig. 5.3(b), in which three types of tasks are
mplemented, including converting molecular coordinates into descriptors, sampling points from the dataset with built-
n sampling procedure, and perform the ML operations. The MLatom is proposed with various physics/chemistry-specific
eatures, including converting molecular composition and geometry to ML input vectors, enforcing invariance to atom
ermutations, self-correction, and efficient parallel implementation of KRR [401,402], farthest-point and structure-based
ampling, model selection and evaluation. The MLatom also provides a series of molecular descriptors and various kernel
unctions of KRR, such as Gaussian, Laplacian and Matérn [51,239,249,403,404]. Currently, the MLatom has been used for
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ESs construction, energy gradients calculation, nonadiabatic excited-state dynamics running, quantum chemical methods
esigning, and chemical space exploration.
Subsequently, Haghighatlari et al. [377] (2020) introduced an open-source ML and informatics software package

ChemML) for performing various data-driven researches in the chemical and materials domain, including the analysis,
ining, validation and modeling. Fig. 5.3(c) presents the workflow of ChemML, in which a host of methods are

ncorporated to support the core tasks. The ChemML is implemented with three ML methods, including active learning
AL) [405] for minimizing the dataset size, TL [406] for generating high-quality data derived prediction models with a
ombination of a large set lower-quality data and a small set of high-quality data, and auto ML for automatically selecting
he hyperparameters. These ML methods promise the key features, such as automation, general-purpose utility, versatility,
nd user-friendliness, which ChemML a viable and widely accessible tool in computational physics and chemistry. Apart
rom various applications in computational physics and chemistry, these software packages (PES-Learn, MLatom, and
hemML) are also designed to facilitate methodological innovation, and have become the cornerstones of the software
cosystem for data-driven in silico research.

hemical reaction prediction
The process of identifying a suitable reaction pathway which transforms a series of available reactants into a target

ompound is usually achieved by expert chemists with years or decades of experience. For decades, much effort has been
ade for computer-aided synthesis design. Since Corey and Wipke [407,408] introduced the Logic and Heuristics Applied

o Synthetic Analysis (LHASA) [409], a computer-assisted approach for codifying retrosynthesis involved the explicit
dentification of molecular structures which lend themselves to disconnection or can be produced by known reactions in
he forward direction, a series of retrosynthetic planning approaches has been proposed, such as the Computer-Assisted
echanistic Evaluation of Organic Reactions (CAMEO) [410], SOPHIA [411], and Eros [412]. However, these retrosynthetic
lanning approaches require reaction templates, which are submolecular patterns (pattern-matching rules) that encode
hanges in atom connectivity and are recursively applied to a target molecule to produce a candidate synthesis tree. The
pplication of retrosynthetic templates does not always lead to successful forward synthesis. Manual encoding of these
emplates strongly relies on the intuition and experience of a small number of chemists and is not scalable. Because of this,
odern descriptors and ML methods have been used to design syntheses, such as graph-based representations used by
ayala et al. [80,413], NNs used by Wei et al. for predicting reaction outcomes [414], and the knowledge-graph approach
sed by Segler and Waller for generating possible products [415]. In 2017, Coley et al. [79] proposed a model framework
‘‘Ochem_predic_nn’’ model) for predicting reaction outcomes, which incorporates traditional reaction templates and NNs
or flexibility pattern recognition. Fig. 5.4A shows the model framework, which contains two main steps: the forward
numeration step for applying overgeneralized forward reaction templates to a pool of reactants to generate a series of
hemically plausible products, and the candidate ranking step for estimating which candidate product is the major product
s a multiway classification problem using ML methods. Based on 15000 experimental reaction records from the USPTO
atabase, this model is evaluated by training a model and predicting the major product, which presents the major product
ank 1 in 71.8% of cases. ML plays an essential role in computer-aided synthesis design, not only as a key component of
utomated inverse synthesis programs but also as a stand-alone tool for chemists to assess the feasibility of reactions. In
020, based on unsupervised assisted NNs, Zhang et al. [378] introduced an unsupervised assisted directional design of
hemical reactions (UADDCR) software for determining the probability of a chemical reaction to be conducted smoothly
t certain conditions, including the chemical equations, facets and surface compositions. Fig. 5.4B presents the workflow
f UADDCR software, which contains four steps: the inputs step (step 1), containing the reactant, product, facet, surface
omposition, and reaction energy for optional, one-hot encoding step (step 2) for transforming the inputs into encoding
nformation, K-means clustering and automatically classifying or the SVM classification step (step 3), and the prediction
tep (step 4 for) of activation energies.
As we discussed above, ML methods have been widely used for PES construction, property prediction, automatic

L model proposal, and reaction prediction and design, leading to a series of relevant software and packages. In the
ollowing sections, three representative software programs (NN-FQM, UADDCR, and QSAR-Co-X) with the GUI interface
re introduced in detail.

.1. NN-FQM: Neural network (NN)-based fragmental QM software for molecular crystal prediction

As we discussed in Sections 3.1 and 4.1, high-level QM methods and fragment-based methods have been widely used in
olecular crystal systems for structure optimization, predictions of Gibbs energy, atomic forces, bond lengths, vibrational
pectra and the phase transition under extreme pressure conditions. In recent years, ML approaches have made rapid and
ubstantial progress in the applications of property prediction, PES construction, and force field construction. Based on
his, Han et al. [183] (2020) proposed a new NN-based fragmental QM (NN-FQM) approach to efficiently and accurately
onstruct the PESs of low-order many-body terms and the energy derivative and to further optimize the crystal structures
nd predict the properties at high pressure, thus predicting the phase transition between two crystal phases. Fig. 5.5 shows
n illustration of the NN-FQM workflow, which contains the PES construction module (Fig. 5.5(a)) based on a combination
f fragmental methods and NNs, and the application module (Fig. 5.5(a)) for optimizing the crystal structure, predicting
he energy, atomic forces, bond length, and phase transition. In the PES construction module, a particularly designed
ragmental method is used to decompose the crystal structures into a series of one- and two-body fragments, whose
51
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Fig. 5.4. Workflow of (A) ‘‘Ochem_predic_nn’’ model framework, and (B) UADDCR software. The candidate ranking in ‘‘Ochem_predic_nn’’ model
framework A(a) is achieved by the edit-based model architecture (b).
Source: These figures were reproduced from these reports of Coley et al. [79], and Zhang et al. [378].
© 2020 Elsevier.

energy and derivation are calculated by high-level QM methods such as MP2 and CCSD(T). MD simulations are used for
structure sampling to generate a large number of structures, while Gaussian descriptors are used for the transformation of
the atomic positions that typically produces feature vectors (fingerprints) to describe the atomic system, which are suitable
to be fed into various ML models to obtain a specified output [416,417]. The descriptors are then fed into an NN model for
PES construction, which is implemented by the Atomistic Machine-learning Package (Amp) [371]. During model training,
the two hidden layers, each with 15 nodes, are fully connected, which is determined by the NN to predict the potential
energies via molecular descriptors. The activation function of the hyperbolic tangent function is used in each node, with
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [418] optimizer to improve the training speed while strengthening the
optimization. Notably, for crystals composed of the same molecule, the PES model only needs to be trained once, or
replaced by external PESs. In the application module, a crystal structure is divided into a series of fragments that are
52
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Fig. 5.5. Illustration of NN-FQM workflow. (a) the PESs construction module based on NNs, and (b) the property prediction module for optimizing
crystal structure, predicting energy, atomic forces, bond length, and phase transition.
Source: Reproduced from Han et al.’s work [183].
© 2021 American Physical Society.

treated with the PESs, and thus the energies, atomic forces, and properties can be obtained by summarizing the results
of these fragments.

The performance of NN-FQM is evaluated by applying it to ice crystals (IX and XV) under high-pressure conditions. In
total, 105000 one-body and 109025 two-body data of ice molecules generated at a pressure range of 0.1 GPa to 2.0 GPa
are used to construct the PESs, which present considerably small RMSEs (0.0029 kcal/mol and 0.0429 kcal/mol for one-
body and two-body, respectively). In further crystal predictions, NN-FQM successfully reproduced the crystal structure
parameters, Gibbs free energies, and covalent bond lengths and predicted the boundary of the phase transition between
ice IX and XV at a high pressure, which agrees well with the experimental results. NN-FQM is designed as an easy-to-use
open-source visualization software, the interface of which is shown in Fig. 5.6.

In particular, the PESs of ice molecules are embedded in NN-FQM software. For an investigation of ice crystals, users
are required to load the crystal structures, which can be viewed in the structure window. After the parameter setting,
several properties and phase transitions can be obtained by clicking on the button. Notably, to improve the accuracy of
prediction, users are also allowed to load external PESs from other ML models. Apart from ice, the NN-FQM software is
capable for the structure optimization and property predictions of a wide range of molecules and molecular crystals (such
as CO2, NH3, N2,) by loading corresponding PESs without any change in the software. Furthermore, the NN-FQM software
is designed based on an MBE fragmental scheme, and can be easily modified with other fragmental schemes for wider
application.
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Fig. 5.6. Interface of NN-FQM software. Computer software copyright registration certificate: No. 08593048, China, by Jinjin Li et al.

5.2. UADDCR: unsupervised assisted directional design of chemical reactions

For decades, controlling and designing chemical reactions has remained a great challenge due to the high trial and
error cost in experiments and the extreme computational cost of QM calculations. The process of identifying a suitable
reaction pathway for transforming a series of available reactants into a target compound is usually implemented by
expert researchers with extensive relevant experience. For years, electronic structure methods such as DFT have been
commonly used to obtain the activation energies of chemical reactions. [419] However, high-level QM methods suffer
large computational complexity scaling, which limits the applicability for large datasets with a large number of reactions.
In recent years, ML methods have been successfully applied to accelerate QM calculations, such as the prediction of energy,
atomic forces, chemical shifts and the construction of PESs. Efforts have also been made to predict the activation energy
of reactions based on ML methods. Several works have reported using NN methods for activation energy prediction with
the input features calculated using DFT [81,420]. To avoid DFT calculations for reaction features, a series of descriptors are
proposed to express the features of chemical reactions [421–424], including molecular fingerprints, such as the widely
used Morgan fingerprint, a Coulomb matrix and extended circular fingerprint, as well as physical representations, such
as partial charge, the number of rings and molecular weight.

In 2020, Zhang et al. [378] proposed UADDCR visualization software to determine the possibility of chemical reac-
tions with inputs of reactants, reaction equations, products, facets and surface compositions. UADDCR is designed to
automatically predict the possibility of chemical reactions by activation energy prediction based on the ML method
and statistical analysis, including NNs, one-hot [425] encoding, K-means clustering [426,427], and SVM [428]. Fig. 5.4B
presents the overall workflow of the UADDCR software, which contains four steps: inputs, one-hot encoding, clustering
or classification, and the prediction of activation energies. In step 1, the reaction equation, reactant, product, facet, and
surface composition are the standard input parameters for the rapid prediction process, while the input of the reaction
energy is an optional parameter for improving the prediction performance. The reaction energy can then be obtained from
experiments or ab initio calculations. In step 2, the input parameters, such as the reactant, reaction equation, product, and
surface composition, are transformed by one-hot encoding from letter strings to digital form for further model training.
In step 3, based on the input features, the K-means approach is adopted to train the model and automatically cluster data
into different categories. In step 4, based on the classifications NNs are used for predicting the activation energies and
thus the possibility of the reactions.
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To evaluate the performance of this UADDCR approach, an activation energy prediction model was proposed based on
86 reaction data points. Fig. 5.7A shows the analysis of these reaction data. The activation energy frequency distribution
Fig. 5.7A(a)) shows that 95.59% of the data are located in the activation energy range from −1 eV to 4 eV, with an average
alue of 1.24 eV, a minimum value of −2.47 eV, and a maximum value of 7.00 eV. The Brønsted–Evans–Polanyi (BEP)
elationship (Fig. 5.7A(b)) shows that a high activation energy is usually accompanied by a high reaction energy and that
urface compositions and facets also significantly influence the activation energy and reaction energy. Based on these
nalyses, the reactant, product, surface compositions and facets are selected as the model inputs. In addition, to avoid
odel instability resulting from excessive features, K-means clustering and SVM classification are performed before NN
odel training and activation energy prediction. Fig. 5.7B presents the analysis of the clustering results, including the two-
imensional t-distributed stochastic neighbor embedding (t-SNE) [429,430] visualization of groups A and B (Fig. 5.7B(a)),
he Gaussian distribution of activation energies in different groups (Fig. 5.7B(b)), the cumulative possibility of group A
nd group B depending on the surface composition (Fig. 5.7B(c)), and the cumulative possibility of group A and group
depending on the facet (Fig. 5.7B(d)). In practice, UADDCR presents a good performance in predicting the activation
nergy. For example, the activation energy of the reaction CH4 → CH3 + H predicted by UADDCR software is 0.69 eV,
hich is much lower than that predicted by DFT calculations [431] (0.76 eV), but close to the experimental results [432]
0.54 eV).

The UADDCR software is developed as an easy-to-use visualization software, which contains four standard inputs,
ncluding reactant, product, facet and surface composition, and an advanced input (reaction energy) for optional. The
nterface of UADDCR is shown in Fig. 5.8, in which the predictions of activation energy and chemical reaction possibility
re shown on the right side of the interface and the reaction with activation energy larger than 1.2 eV is considered as
ow probability. With the reliability and usability, this software is expected to be a power tool for reaction prediction and
esign. Furthermore, benefit from the one-hot encoding, the model in UADDCR can be simply improved by incorporating
dditional data of reactions, such as reaction temperature, environmental acidity. The authors also state that the UADDCR
odel can be further improved by expanding the dataset, considering the relationship between two chemical reactions,
nd incorporating more features. In addition, the UADDCR software was originally designed to predict catalytic reactions,
nd can be extended to other chemical reactions and even biological reactions, such as enzymatic reactions.

.3. QSAR-Co-X: an open-source toolkit for multitarget QSAR (mt-QSAR) modeling

Quantitative structure–activity relationship (QSAR) modeling is a well-known and essential computational technique
hat has been proven to be extremely powerful with a wide range of applications in research fields, including physics,
hemistry and materials science [433,434]. QSAR can be used for screening desirable lead chemicals and providing hints
o improve the physical and chemical properties of interest. For years, ML methods [383] (such as RF, NN, and DL) and
he Monte Carlo method [435–437] have been successfully applied to perform QSAR modeling. Despite the significant
rogress, QSAR modeling still suffers some limitations in practice [438]. In general, QSAR models can be divided into
wo types: classification-based models for establishing a relationship between the descriptors and the categorical values
f the response variables and regression-based models for finding the relationship between the descriptors and the
uantitative values of the response variables [439]. In 2019, Ambure et al. [384] developed open-source standalone
oftware (QSAR-Co) for constructing classification-based QSAR models, which allows mining the response data coming
rom multiple conditions. The overall workflow of QSAR-Co is shown in Fig. 5.2A, which contains two main modules,
ncluding module 1 (Fig. 5.2A(a)) for model development and module 2 (Fig. 5.2A(b)) for screening and prediction. During
he model development module (module 1), the users are provided a total of eight steps for developing a classification-
ased QSAR model, including step 1 for the selection between the Normal approach [440,441] and the Box–Jenkins
pproach [391,442–446] for model building, an optional step 2 for the data retreatment to remove noninformative
escriptors that may not have a significant contribution for model building, step 3 for the dataset division based on
andom or rational approaches (such as Kennard-Stone’s algorithm [447] and Euclidean distance-based algorithm [448]),
tep 4 for removal of less-discriminating descriptors identified by the molecular spectrum analysis approach [448], step 5
or variable selection of the genetic algorithm (GA) [385,449–451], step 6 for the selection of model development approach
etween the two-class linear discriminant analysis (LDA) [387] technique and RF [388] method, step 6 for model selection
nd model validation, and step 8 for defining the applicability domain (AD) based on the standardization technique [452]
r confidence estimation approach [448,453]. In the screening and prediction module (module 2), users can perform
hree steps for screening the query chemicals, including step 1 for providing the required input, step 2 for selecting
he appropriate model development approaches, and step 3 for screening that provides the predicted class for query
ompounds and the applicability domain status for every query compound. QSAR-Co software has been demonstrated to
e significantly predictive for previously reported datasets [391,444,454].
In general, mt-QSAR modeling is strongly dependent on the strategies (such as methods and descriptors) used for

odel construction, which mainly results from the fact that the number of input descriptors grows with the experimental
nd theoretical conditions. However, employing numerous strategies for mt-QSAR modeling will significantly improve the
sefulness and scope. In that case, Halder and Cordeiro [379] (2021) developed open-source visualization software (QSAR-
o-X) for modeling mt-QSAR based on the Box–Jenkins approach [390,391,454]. The QSAR-Co-X toolkit, an improved
ersion of QSAR-Co, provides several functionalities for dataset selection, curation plus computation of descriptors, linear
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Fig. 5.7. Data analysis of training dataset and clustering result in UADDCR software. (A) Analysis of reaction data, including (a) the activation energy
frequency distribution, and (b) the Brønsted–Evans–Polanyi (BEP) relationship for six different reactions. (B) Analysis of clustering results, including
(a) the two-dimensional t-distributed stochastic neighbor embedding (t-SNE) visualization of groups A and group B, (b) the activation energies
distribution for different groups, (c) the cumulative possibility of the two groups (A and B) depending on the surface composition, and (d) the
cumulative possibility of the two groups (A and B) depending on the facet.
Source: These figures were reproduced from Zhang et al.’s work [378].
© 2020 Elsevier.
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Fig. 5.8. Visualization interface for UADDCR software, which contains four standard inputs, including reactant, product, facet and surface composition,
nd an advanced input (reaction energy) for optional. The predictions of activation energy and chemical reaction possibility are shown on the right
ide of the interface. The reaction with activation energy larger than 1.2 eV is considered as low probability. Computer software copyright registration
ertificate: No. 6048003, China, by Jinjin Li et al.

r non-linear model construction, and a comprehensive results analysis. Fig. 5.9(a) shows the function of this QSAR-Co-X
oftware, which contains four separating modules, including module 1 for linear modeling (LM), module 2 for non-linear
odeling with a grid (NLG) search, module 3 for non-linear modeling with user-specific parameters (NLU), and module 4

or condition-wise prediction (CWP). In module 1, six steps are adopted to construct the linear models, including dataset
egmentation, calculation of the input deviation descriptors, data pretreatment, LDA model training with the sequential
tepwise (SFS) and fast stepwise (FS) feature selection algorithms [455], model validation by goodness-of-fit [456] and by
nternal and external validation criteria [452], and performance evaluation by Y-randomization with conditions scheme.
odule 2 is designed to construct nonlinear models using the grid search with the hyperparameter optimization approach,
hich provides six ML methods for the implementation, including kNN [457], Bernoulli naïve Bayes (NB) classifier [458],
upport vector classifier (SVC) [459], RF [176], gradient boosting (GB) [460], and multilayer perceptron (MLP) NNs [461].
he NLU module (module 3) allows users to construct nonlinear models (NLMs) with specific parameter settings that can
e used for fast generation of NLMs. Module 4 is designed as an automatic and simple tool for checking the mt-QSAR
btained results. An illustration of the workflow of QSAR-Co-X software is shown in Fig. 5.2(b).
As a visualization toolkit, QSAR-Co-X also provides a GUI interface for easy use, as shown in Fig. 5.9(b). The QSAR-

o-X toolkit provides various features, including dataset division options, Box–Jenkins moving average operators, feature
epresentation approaches, ML models, hyperparameter tuning for ML algorithms, Yc-randomization, correlation matrix
nalyses, and condition-wise-prediction. To evaluate the functionalities, the QSAR-Co-X toolkit is applied to mt-QSAR
odeling on four previously reported datasets, which presents a considerably good performance. The QSAR-Co-X toolkit

mplements a series of additional functions and provides a well-designed and useful platform for mt-QSAR modeling and
s expected to make significant contributions to mt-QSAR modeling with a wide range of applications.

. Conclusion

As discussed above, all-atom QM methods and fragment-based QM methods have undergone tremendous progress in
he field of computational physics and chemistry. Thanks to the significant development of ML methods and chemical
escriptors, in recent years numerous ML-driven models, algorithms, software and platforms have been developed for
arious applications in physics and chemistry, including PES construction, CSP, chemical reaction prediction, and property
rediction, such as chemical shift, interaction energy, and thermal properties. In this review we introduced the recent
57
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Fig. 5.9. Illustration and graphic user interface of QSAR-Co-X toolkit. (a) The functions of four modules and (b) the graphic user interface of module
(NLU).

ource: Figure (b) was a screenshot of software from Halder et al.’s work [379].

rogress in computational methods for physical and chemical calculations, including all-atom QM methods (DFT, MP2
nd CCSD(T)), fragment-based methods, and ML-based QM methods. We also reviewed the wide range of applications
f these methods, including predictions of small inorganic molecules and crystals (such as property predictions of small
olecules and crystals at a high pressure and negative pressure based on QM methods, ML-driven PESs, and property
rediction based on ML), predictions of drug molecules (such as property and phase transformation predictions based on
Mmethods, property prediction based on ML methods, ML PES construction and ML-driven CSP), and ML-driven software
nd packages for implementing ML in physical and chemical applications. ML algorithms have become an essential and
owerful tool for accelerating QM calculations in computational physics and chemistry.
However, there are many challenges for property predictions using ML methods with the accuracy of high-level QM

ethods. For example, several more large and high-quality datasets are required for PES construction and property
rediction. On the other hand, new powerful ML methods only rely on a small amount of data and are essential for
omputational savings and wide applications. Proposing reliable models based on small datasets is challenging, which
akes it crucial to achieve data efficiency with a considerable robustness and accuracy for ML methods by including prior
hysical knowledge and invariance information. In addition, the selection bias encoded in many of the training sets used
n the field is another serious problem lurking behind rigorous and robust statistical learning procedures, such as k-fold
ross-validation and convergent learning curves. Stability or attribute distributions are often unknown, thus hindering
rigorous assessment of the extent to which any given dataset is truly representative of the broader chemical space.
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rocessing big data at high volume, velocity and veracity with great versatility is also a challenge for ML algorithms.
redictably, progress in ML methods, high-quality data acquisition and data representation will advance the accuracy
nd efficiency for chemical shifts and other property predictions, as well as PES constructions. Furthermore, a series of
L-driven software and packages will promote the development of ML models and applications in a wide range of fields.
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